`(6x-1)^3 =(-3)^2 .15 +208`
Tìm x
\(\left(6x-11\right)^3\)=\(\left(-3^{ }\right)^2\) . 15 +208
(6x - 11)3 = (-3)2 . 15 + 208
(6x - 11)3 = 9 . 15 + 208
(6x - 11)3 = 135 + 208
(6x - 11)3 = 343
(6x - 11)3 = 73 (cùng số mũ)
⇒6x - 11 = 7
6x = 7 + 11
6x = 18
x =3
bài 1 : tìm x , biết
a) (2x-3).(8x-1)+(4x+5).(3-4x)=20
b) (4x+1).(6x-2)-(12+3).(2x-1)=15
bài 2 : tìm 3 số tự nhiên chẵn liên tiếp , biết tích của 2 số sau lớn hơn tích của 2 số đầu là 208
Bài 2 : Gọi số tự nhiên chẵn đầu tiên là a (hai số tiếp theo lần lượt là a+2 và a+4)
Theo bài ra ta có : \(\left(a+2\right)\left(a+4\right)-a\left(a+2\right)=208\)
\(\Rightarrow\left(a+2\right)\left(a+4-a\right)=208\)
\(\Rightarrow\left(a+2\right).4=208\)
\(\Rightarrow a+2=208:4=52\)
\(\Rightarrow a=50\)
Vậy các số tiếp theo là 52 ;54
Vậy....................
Tìm x
a. (2010-x).(x+2021)=0
b. (x-2)2+5.(x-2)=0
c. (6x-11)3.(-3)2.15=208
Cần gấp ạ
a) (2010 - x)(x + 2021) = 0
<=> \(\left[{}\begin{matrix}2010-x=0\\x+2021=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=2010\\x=-2021\end{matrix}\right.\)
b) (x - 2)^2 + 5(x - 2) = 0
<=> x^2 - 4x + 4 + 5x - 10 = 0
<=> x^2 + x - 6 = 0
<=> x^2 - 2x + 3x - 6 = 0
<=> x(x - 2) + 3(x - 2) = 0
<=> (x + 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Tìm x
(7x - 1)3 = (-3)2 . 15 + 208
Tìm x
(7x - 1)3 = (-3)2 . 15 + 208
\(<=> (7x-1)^3 = 135 +208\)
\(<=> (7x-1)^3 = 343\)
\(<=> \)\((7x-1)^3 = 7^3\)
\(<=> 7x-1= 7\)
\(<=> 7x=8\)
\(<=> x=\dfrac{7}{8}\)
Vậy \( x=\dfrac{7}{8} \)
Tìm x , biết:
a) (2x-15)5 = (2x-15)3
b) (7x-11)3 = (-3)2 . 15 + 208
Giúp mình nhanh nhé
a)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\\ \Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\\ \Leftrightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15-1\right).\left(2d-15+1\right)=0\end{matrix}\right.\\\Leftrightarrow\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right. \)
b) \(\left(7x-11\right)^3=\left(-3\right)^2.15+208\\ \Leftrightarrow\left(7x-11\right)^3=343=7^3\\ \Leftrightarrow7x-11=7\\ \Leftrightarrow x=\dfrac{18}{7}\)
a, X-3/4-3/28-3/70-3/130-3/208= 1/6
b, (1/15+1/35+1/63)xX =1
C, 242/363+1616/2121=2/7xX
Thực hiện phép tính:
a/ 2/3+2/15+2/63+2/99+2/143+2/195
b/ 1/4+1/8+1/77+1/130+1/208
a) Đề thiếu nhé. sửa đề:
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{195}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
Tìm x biết ( 7x-11)3 = (-3)2.15+208
mình sửa lại nha, nãy mình nhìn nhầm dấu:
343x3 - 1617x2 + 2541x - 1674 = 0
x = 18/7 là nghiệm duy nhất của phương trình đã cho
Bài 3: phân tích thành nhân tử:
1/ 9x^3-xy^2
2/x^2-3xy-6x+18y
3/x^2-3xy-6x+18y 3/6x(x-y)-9y^2+9xy
4/ 6xy-x^2+36-9y^2
5/ x^4-6x^2+5
6/ 9x62-6x-y^2+2y
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài5: 1/ 12x^3y^2/18xy^5
2/10xy-5x^2/2x^2-8y^2
3/ x^2-xy-x+y/x^2+xy-x-y
4/ (x+1)(x^2-2x+1)/(6x^2-6)(x^3-1)
5/ 2x^2-7x+3/1-4x^2
bài 5:
1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)
2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)
\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)
3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)
\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)
\(=\dfrac{1}{6\left(x^2+x+1\right)}\)
5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)
\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)
\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)
Bài 3:
1: \(9x^3-xy^2\)
\(=x\cdot9x^2-x\cdot y^2\)
\(=x\left(9x^2-y^2\right)\)
\(=x\left(3x-y\right)\left(3x+y\right)\)
2: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
3: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
4: \(6xy-x^2+36-9y^2\)
\(=36-\left(x^2-6xy+9y^2\right)\)
\(=36-\left(x-3y\right)^2\)
\(=\left(6-x+3y\right)\left(6+x-3y\right)\)
5: \(x^4-6x^2+5\)
\(=x^4-x^2-5x^2+5\)
\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)
6: \(9x^2-6x-y^2+2y\)
\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)
\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x+y-2\right)\)
Tìm x
x + 1/ 2 = 8/ -3
(-5/3)3 < x < -24/35 * -5/6
(7x-11)3 = (-3)2 *15 +208
1) \(x=\frac{8}{-3}-\frac{1}{2}=\frac{-19}{6}\)
2) \(\left(\frac{-5}{3}\right)^3=\frac{-125}{27}\)
\(\frac{-24}{35}.\frac{-5}{6}=\frac{4}{7}\)
Mà \(\frac{-125}{27}<0<\frac{4}{7}\)
=> \(x=0\)
3) \(\left(7.x-11\right)^3=343\)
=> \(\left(7.x-11\right)^3=7^3\)
=> \(7.x-11=7\)
=> \(x=\frac{7+11}{7}=\frac{18}{7}\)