Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trâm Anh Kiều
Xem chi tiết
Trần Tùng Anh
6 tháng 12 2023 lúc 18:55

A ko chia hết cho 3

Manhmoi
Xem chi tiết
Trúc Giang
12 tháng 9 2021 lúc 9:53

\(A=3+3^2+3^3+...+3^{2020}=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}.\left(1+3\right)=\left(1+3\right)\left(3+3^3+...+3^{2019}\right)=4.\left(3+3^3+...+3^{2019}\right)⋮4\)

Hoang Minh Ha
18 tháng 10 2021 lúc 18:37

A=3 + 3+ 3+ ... + 32020 =3 (1 + 3) + 3(1 + 3) + ... + 32019 . (1 + 3)

=(1 + 3)(3 + 33+...+32019)=4 . ( 3 + 33+ ... + 32019) ⋮ 4 

 

Hoang Minh Ha
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 20:25

\(B=3+3^2+3^3+...+3^{60}\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

Nguyễn Hoàng Minh
Xem chi tiết
Kiều Vũ Linh
24 tháng 12 2023 lúc 21:58

Số số hạng của B:

60 - 1 + 1 = 60 (số)

Do 60 ⋮ 3 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

B = (3 + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3⁵⁸ + 3⁵⁹ + 3⁶⁰)

= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3⁵⁸.(1 + 3 + 3²)

= 3.13 + 3⁴.13 + ... + 3⁵⁸.13

= 13.(3 + 3⁴ + ... + 3⁵⁸) ⋮ 13

Vậy B ⋮ 13

Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

duc_1412_gioiok
Xem chi tiết
Nguyễn Anh Quân
23 tháng 11 2017 lúc 20:10

Tổng trên = (31+32012).[(32012-31:1+1] : 2 = 32043 . 31982 : 2 = 42043 . 15991 lẻ

=> tổng trên ko chia hết cho 120

k mk nha

duc_1412_gioiok
23 tháng 11 2017 lúc 20:40

đề sai 

Son Goku
8 tháng 3 2018 lúc 21:54

Tổng trên có ​31982 số hạng

​Nên tổng trên bằng:(32012+31).31982/2

​=32043.15991 là số lẻ ko chia hết cho 120

​Tk mình nha bn !

Phạm Ngọc Thảo Nguyên
Xem chi tiết
Lê Minh Long
29 tháng 12 2016 lúc 22:01

tích tao nhé ahihi

Lê Minh Long
29 tháng 12 2016 lúc 22:00

không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn

Phạm Ngọc Thảo Nguyên
30 tháng 12 2016 lúc 9:01

còn 1 cách nào khác hok bạn? mik hok hỉu một chút

Nguyễn Trúc Quỳnh
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
8 tháng 11 2023 lúc 22:33

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

Toru
8 tháng 11 2023 lúc 22:35

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

Lê Phạm Bảo Hân
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:40

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

Akai Haruma
31 tháng 12 2023 lúc 14:41

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

h1t36
Xem chi tiết
Kiều Vũ Linh
17 tháng 11 2023 lúc 10:28

Sửa đề:

\(A=2.5.7.9.11.13+78\)

Ta có:

*) \(2.5.7.9.13⋮3\)

\(78⋮3\)

\(\Rightarrow A⋮3\)

*) \(2.5.7.9.13=18.5.7.13⋮6\)

\(78⋮6\)

\(\Rightarrow A⋮6\)

*) \(2.5.7.9.13⋮9\)

\(78⋮̸9\)

\(\Rightarrow A⋮̸9\)

*) \(2.5.7.9.13⋮13\)

\(78⋮13\)

\(\Rightarrow A⋮13\)