Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Mỹ Lệ
Xem chi tiết
Hà Ngân Hà
18 tháng 5 2016 lúc 10:47

A B C G M N

 

vì tgiac ABC cân tại A

có BM và CN là trung tuyến=> AM=MC=AN=NB

a, xét tgiac BMC và tgiac CNB có:

BC là cạnh chung

góc B= góc C(gt)

BM=CN(cmt)

vậy tgiac BMC=Tgiac CNB(c.g.c)

b. xét tgiac AMN có AM=AN(cmt)

=> tgiac AMN cân tại đỉnh A

ta lại có tgiac ABC cân tại A 

Vậy góc ANM= góc ABC= (180-góc A):2

mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC

 

Hà Ngân Hà
18 tháng 5 2016 lúc 10:49

c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC

mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC

mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)

Minh Thư Đặng
Xem chi tiết
Vũ Minh Duy
19 tháng 4 2022 lúc 14:44

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)

Trần Khang
Xem chi tiết
TRẦN YẾN NHI
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 19:44

a: Xét ΔABM và ΔACN có

\(\widehat{A}\) chung

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

Do đó: ΔABM=ΔACN

Suy ra: BM=CN và AM=AN

hay ΔAMN cân tại A

b: Xét ΔABC có 

AN/AB=AM/AC

Do đó: MN//BC

gogeta sjj 4
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2023 lúc 9:11

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

『Kuroba ム Tsuki Ryoo...
14 tháng 5 2023 lúc 9:26

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
21 tháng 9 2023 lúc 14:03

Tham khảo:

a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.

Vì AB = AC (tính chất tam giác cân)

\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)

Xét tam giác AMB và tam giác ANC ta có :

AM = AN (cmt)

AB = AC

Góc A chung

\( \Rightarrow \Delta AMB =\Delta ANC\)

\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )

b) Vì BM và CN là các đường trung tuyến

Mà I là giao điểm của BM và CN

\( \Rightarrow \) I là trọng tâm của tam giác ABC

\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC

\( \Rightarrow \) H là trung điểm của BC

hoàng phúc kiên
Xem chi tiết
Mìn khum bê đê
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 19:38

a) Sửa đề: ΔAMB=ΔANC

Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}\) chung

Do đó: ΔAMB=ΔANC(cạnh huyền-góc nhọn)

b) Xét ΔBMC vuông tại M và ΔCNB vuông tại N có 

CB chung

\(\widehat{BCM}=\widehat{CBN}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)

c) Ta có: ΔBMC=ΔCNB(cmt)

nên \(\widehat{MBC}=\widehat{NCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

\(\Leftrightarrow IB=IC\)(hai cạnh bên)

Ta có: ΔANC=ΔAMB(cmt)

nên AN=AM(hai cạnh tương ứng)

Xét ΔAMI và ΔANI có

AM=AN(cmt)

AI chung

MI=NI(cmt)

Do đó: ΔAMI=ΔANI(c-c-c)

Minh Thư Đặng
Xem chi tiết
Phạm Thanh Hà
19 tháng 4 2022 lúc 13:12

a)Xét ΔBCM và ΔCBN có:
               BC chung
           góc NBC=góc MCB(ΔABC cân)
               BN=MC (gt)
 ⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)

Minh Thư Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 23:35

a: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

b: ΔNBC=ΔMCB

=>góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

mà AB=AC

nên AO là trung trực của BC