Cho tam giác ABC cân tại A. Phân giác BM,CN cắt nhau tại O. Cminh: a)BM=CN
b)AO⊥ CN
cho tam giác abc cân tại A, Các đường trung tuyến BM và CN
a)CMR: tam giác BMC=CNB
b)CMR: MN//BC
c)BM cắt CN tại G. CMR: AG vuông góc MN
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
cho tam giác abc cân tại A 2 trung tuyến BM,CN cắt nhau tại I 2 tia phân giác của góc B và C cắt tại O 2 trung trực của 2 cạnh AB,AC cắt nhau tại k a) chứng minh BM=CN b) chứng minh OB=OC c) chứng minh A,O,I,K thẳng hàng
cho tam giác abc cân tại a bm và cn lần lượt là tia phân giác của abc và acb
a chứng minh bm =cn amn là tam giác cân
b mn //bc
c ao là tia phân giác của bac
a: Xét ΔABM và ΔACN có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
Do đó: ΔABM=ΔACN
Suy ra: BM=CN và AM=AN
hay ΔAMN cân tại A
b: Xét ΔABC có
AN/AB=AM/AC
Do đó: MN//BC
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABC = tam giác ACN , từ đó suy ra BM=CN
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Mình xin phép sửa đề:
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN
`------`
\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)
\(\text{CM | BM = CN}\)
\(\text{BM là đường trung tuyến}\)
`->`\(\text{MA = MC (1)}\)
\(\text{CN là đường trung tuyến}\)
`->`\(\text{NA = NB (2)}\)
`\Delta ABC` cân tại A
`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
`->`\(\text{NA = NB = MA = MC}\)
Xét `\Delta ABM` và `\Delta ACN`:
\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)
`=> \Delta ABM = \Delta ACN (c-g-c)`
`->`\(\text{BM = CN (2 cạnh tương ứng).}\)
Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến.
a) Chứng minh rằng BM = CN
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC
Tham khảo:
a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.
Vì AB = AC (tính chất tam giác cân)
\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)
Xét tam giác AMB và tam giác ANC ta có :
AM = AN (cmt)
AB = AC
Góc A chung
\( \Rightarrow \Delta AMB =\Delta ANC\)
\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )
b) Vì BM và CN là các đường trung tuyến
Mà I là giao điểm của BM và CN
\( \Rightarrow \) I là trọng tâm của tam giác ABC
\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC
\( \Rightarrow \) H là trung điểm của BC
Cho tam giác ABC cân tại A có góc BAC=80 độ, kẻ đường cao BE và CD cắt nhau tại O. a) Chứng minh: tam giác EBA= tam giác DCA và tính góc ABE, góc ABC. b) Chứng minh AO là tia phân giác của góc BAC. c) Gọi BM và CN lần lượt là các tia phân giác ngoài của góc ABC và góc ACB, F là giao điểm của BM và CN. Chứng minh 3 điểm A,O,F thẳng hàng
a) Sửa đề: ΔAMB=ΔANC
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
Do đó: ΔAMB=ΔANC(cạnh huyền-góc nhọn)
b) Xét ΔBMC vuông tại M và ΔCNB vuông tại N có
CB chung
\(\widehat{BCM}=\widehat{CBN}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)
c) Ta có: ΔBMC=ΔCNB(cmt)
nên \(\widehat{MBC}=\widehat{NCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
\(\Leftrightarrow IB=IC\)(hai cạnh bên)
Ta có: ΔANC=ΔAMB(cmt)
nên AN=AM(hai cạnh tương ứng)
Xét ΔAMI và ΔANI có
AM=AN(cmt)
AI chung
MI=NI(cmt)
Do đó: ΔAMI=ΔANI(c-c-c)
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a)Xét ΔBCM và ΔCBN có:
BC chung
góc NBC=góc MCB(ΔABC cân)
BN=MC (gt)
⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là trung trực của BC