cho x> 0 , y>0 , z>0
CMR: (x+y)(y+z)(x+z) > 8xyz
Cho x>=0, y>=0, z>=0. Chứng minh: (x+y)(y+z)(z+x) >=8xyz
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
cho x\(\ge\)0,y\(\ge\)0,z\(\ge\)0
chứng minh rằng:(x+y)(y+z)(x+z)\(\ge\)8xyz
x+y>=2 căn xy
y+z>=2 căn yz
x+z>=2 căn xz
=>(x+y)(y+z)(x+z)>=8xyz
Cho x,y,z> 0 bkết (x+y)(y+z)(z+x)=8xyz. Chứng minh x=y=z
Áp dụng BĐT Cauchy cho 2 số không âm:
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\);
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\))
Cho x > 0 ; y > 0 ; z > 0. Chứng minh:
(x+y) (y+z) (z+x) > 8xyz Xin cảm ơn ạÁp dụng bất đẳng thức Cô-si ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)
\(=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu = khi x=y=z
cho x,y,z>0 thỏa mãn (x+y)(y+z)(z+x)=8xyz
chứng minh x=y=z
cho x,y,z > 0
cm (x+y)(y+z)(z+x) > 8xyz
Áp dụng BĐT AM-GM cho các số dương ta được:
\(x+y\ge2\sqrt{xy}\left(1\right)\)
\(y+z\ge2\sqrt{yz}\left(2\right)\)
\(x+z\ge2\sqrt{xz}\left(3\right)\)
Nhân lần lượt từng vế của ba bđt 1;2;3 ta được:
\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
cho x,y,z>0 thoa man dieu kien (x+y)(y+z)(z+x)=8xyz
CM: x=y=z
(x+y)(y+z)(x+z)=8xyz
<=>\((xy+xz+y^2+yz)(x+z)=8xyz\)
<=>\(x^2y+x^2z+y^2z+xyz+xyz+xz^2+z^2y+yz^2=8xyz\)
<=> \(x^2y+x^2z+y^2x+xz^2+y^2z+yz^2-6xyz=0\)
<=> \(y(x^2+z^2-2xz)+x(y^2-2yz+z^2)+z(y^2-2yx+x^2)=0\)
<=>\(y(x-z)^2+x(y-z)^2+z(x-y)^2=0\)
Mà x,y,z dương
=> \((x-z)^2=0=>x=z\)
\((x-y)^2=0=>x=y\)
\((y-z)^2=0=>y=z\)
Vậy x=y=z
Cho x, y, z >0 thoả mãn: (x+y).(y+z).(z+x)=8xyz. Chứng minh: x=y=z
Cho x, y, z >0 thoả mãn: (x+y).(y+z).(z+x)=8xyz. Chứng minh: x=y=z
Áp dụng BĐT AM - GM ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\).
Đẳng thức xảy ra khi và chỉ khi x = y = z.
Vậy x = y = z.