tính:\(\sqrt{100\left(6,5^2-1,6^2\right)}\)
1) Tính
a)\(\sqrt{21,8^2-18,2^2}\)
b) \(\sqrt{100.\left(6,5^2-1,6^2\right)}\)
2 Thực hiện phép tính
a) \(A=\left(\sqrt{3}+4\right)^2+\left(\sqrt{3}-1^2\right)\)
b) \(B=\left(\sqrt{5}+\sqrt{2}\right)^2-\left(\sqrt{10}+1\right)^2\)
1,
\(a,=\sqrt{\left(21,8-18,2\right)\left(21,8+18,2\right)}\\ =\sqrt{3,6\cdot40}\\ =\sqrt{36\cdot4}\\ =\sqrt{36}\cdot\sqrt{4}\\ =6\cdot4\\ =24\)
\(b,=10\cdot\sqrt{\left(6,5-1,6\right)\left(6,5+1,6\right)}\\ =10\cdot\sqrt{4,9\cdot8,1}\\ =10\cdot\sqrt{49\cdot0,81}\\ =10\cdot\sqrt{49}\cdot\sqrt{0,81}\\ =10\cdot7\cdot0,9\\ =63\)
2,
\(A=7+4\sqrt{3}+\sqrt{3}-1\\ =6+5\sqrt{3}\\ B=7+2\sqrt{10}-\left(11+2\sqrt{10}\right)\\ =7+2\sqrt{10}-11-2\sqrt{10}\\ =-4\)
Tính giá trị của biểu thức:
\(\frac{\left(\left(5,2^2:2,6+8,1\right)^2-6,5^2\right):0,25}{\left(60,192:2,4-1,08\right)^2-0,24\times1400}+\sqrt{\left(-5\right)^2}+1,\left(3\right)-\left(\frac{3}{4}\right)^{-1}\)
Tính S = \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+...+\left[\sqrt{99}\right]+\left[\sqrt{100}\right]\)
\(S=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+.........+\left[\sqrt{99}\right]+\left[\sqrt{100}\right]\)
\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+\left[\sqrt{5}\right]+.....+\left[\sqrt{8}\right]\right)+...+\left(\left[\sqrt{81}\right]+...+\left[99\right]\right)+\left[\sqrt{100}\right]\)
\(=\left(1+1+1\right)+\left(2+2+2+2+2\right)+.......+\left(9+9+9+9+.....+9\right)+10\)
Đến đây dùng casio bạn nhé nếu mình ko có nhầm lẫn về mặt định nghĩa của phần nguyên ^_^
Tính giá trị biểu thức:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0,4}\right)\)
b) \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}\)
c)\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5.\sqrt{2\frac{2}{3}}-\sqrt{6}\)
\(A=\left(\sqrt{8}-3\sqrt{2}+10\right)\left(\sqrt{2}-3\sqrt{0.4}\right)=\sqrt{16}-\frac{12\sqrt{5}}{5}+\sqrt{20}-6\sqrt{10}-6+\frac{18\sqrt{5}}{5}\)
\(A=-2+\frac{16\sqrt{5}}{5}-6\sqrt{10}\)
b)\(B=\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{5}+1}{2}-\frac{\sqrt{5}-1}{2}=1\)
b) \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}\)
\(=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}\)
\(=\frac{\left(\sqrt{5}+1\right)-\sqrt{5}+1}{2}\)
\(=1\)
P/s: câu a) với câu c) vì ko có máy tính nên lười nháp, thông cảm, em tự làm đi
tính:a,\(\dfrac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}\)
b, \(\sqrt{\dfrac{0,2.1,21.0,3}{7,5.3,2.0,64}}\)
c, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
e, \(\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}+2\sqrt{6}\)
\(A=\dfrac{5.\left(38^2-17^2\right)}{8\left(47^2-19^2\right)}\\ =\dfrac{5\left(38-17\right)\left(38+17\right)}{8\left(47-19\right)\left(47+19\right)}\\ =\dfrac{5.21.55}{8.28.66}\\ =\dfrac{5.1155}{8.1848}\\ =\dfrac{5.5}{8.8}\\ =\dfrac{25}{64}\)
\(B=\sqrt{\dfrac{0,2\times1,21\times0,3}{7,5\times3,2\times0,64}}\\ =\sqrt{0,0625\times1,890625\times0,04}\\ =\sqrt{\dfrac{121}{25600}}\\ =\dfrac{11}{160}\)
tính \(\dfrac{\left[\left(5,2^2:2,6+8,1\right)^2-6,5^2\right]:0,025}{\left(60,192:2,4-1,08\right)^2-0,24\cdot1400}+\sqrt{\left(-5\right)^2}+1,\left(3\right)-\left(\dfrac{3}{4}\right)^{-1}\)
\(=\dfrac{\left[\left(10.4+8.1\right)^2-6.5^2\right]:0.025}{576-336}+25+\dfrac{4}{3}-\dfrac{4}{3}\)
\(=\dfrac{3000}{240}+25=\dfrac{25}{2}+25=37.5\)
\(\frac{\left[\left(5,2^2:2,6+8,1\right)^2-6,5^2\right]:0,025}{\left(60,192:2,4-1,08\right)^2-0,24.1400}\) + \(\sqrt{\left(-5\right)^2}\) + 1,(3) - \(\left(\frac{3}{4}\right)^2\)
Tính hộ mik với
= 50 + 5 + \(\frac{4}{3}\)- \(\frac{9}{16}\)
= \(\frac{2677}{48}\)
Thực hiện phép tính
a) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b) \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\)
c) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
e) \(\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}+2\sqrt{6}\)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)
\(B=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(2\sqrt{5}-2+2\sqrt{5}+2\right)=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
\(C=\frac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{5}+1-\sqrt{5}+1-2\right)=0\)
\(D=\frac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(-2+\sqrt{14}\right)=\sqrt{7}-\sqrt{2}\)
\(E=\frac{1}{\sqrt{2}}\left(\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}\right)+2\sqrt{6}\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{12}+1\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}\right)+2\sqrt{6}\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{12}+1+\sqrt{12}-1\right)+2\sqrt{6}\)
\(=\sqrt{24}+2\sqrt{6}=4\sqrt{6}\)
tính: \(B=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+...+\left[\sqrt{100}\right]\)
Nhận xét: \(\left[\sqrt{n^2}\right]=n\); \(\left[\sqrt{a}\right]=n-1\) với (n - 1)2 < a < n2
=> \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]=1+1+1=1.3\)
\(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]=2.5\)
\(\left[\sqrt{9}\right]+...+\sqrt{15}=3.7\)
\(\left[\sqrt{16}\right]+...+\left[\sqrt{24}\right]=4.9\)
Tương tự, nhóm các số có phần nguyên là 5; 6; 7; 8 ;9 ; 10
=> B = 1.3 + 2.5 + 3.7 + 4.9 + 5.11 + 6.13 + 7 .15 + 8.17 + 9.19 + 10.21
B = 825
tính A=\(\left[\frac{100}{2}\right]+\left[\frac{100}{2^2}\right]+...+\left[\frac{100}{2^6}\right]\)
B=\(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{500}\right]\)
C=\(\left[\frac{-12}{3}\right]+\left[\frac{-11}{3}\right]+...+\left[\frac{12}{3}\right]\)