\(=10\cdot\sqrt{8.1\cdot4.9}=10\cdot\sqrt{\dfrac{81}{10}\cdot\dfrac{49}{10}}\)
\(=10\cdot\dfrac{9\cdot7}{10}=63\)
\(=10\cdot\sqrt{8.1\cdot4.9}=10\cdot\sqrt{\dfrac{81}{10}\cdot\dfrac{49}{10}}\)
\(=10\cdot\dfrac{9\cdot7}{10}=63\)
Tính S = \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+...+\left[\sqrt{99}\right]+\left[\sqrt{100}\right]\)
Tính giá trị biểu thức:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0,4}\right)\)
b) \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}\)
c)\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5.\sqrt{2\frac{2}{3}}-\sqrt{6}\)
C)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
b) \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
d) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
e) \(\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}+2\sqrt{6}\)
mình cần giải gấp ạ
1) Tính tổng \(S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
2) Giải phương trình sau : \(\left(x^2-x+1\right)^4-\left(x^2+1\right)\left(x^2-x+1\right)^2+x^2=0\)
\(C=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+....\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(C=\dfrac{1\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\dfrac{1\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1\left(\sqrt{3}-\sqrt{4}\right)}{\left(\sqrt{3}-\sqrt{4}\right)\left(\sqrt{3}+\sqrt{4}\right)}+........\dfrac{1\left(\sqrt{99}-\sqrt{100}\right)}{\left(\sqrt{99}-\sqrt{100}\right)\left(\sqrt{99}+\sqrt{100}\right)}\)
\(C=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}-\sqrt{4}}{3-4}+.....+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(C=\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{3}-\sqrt{4}}{-1}+......+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\)
\(C=-\left(1-\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{4}\right)-......-\left(\sqrt{99}-\sqrt{100}\right)\)
\(C=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-......-\sqrt{99}+\sqrt{100}\)
\(C=-1+\sqrt{100}\)
\(C=10-1=9\)
tính
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(\sqrt{\left(x-3\right)^2}\left(x>3\right)\)
\(\sqrt{\left(1-x\right)^2}\left(x>1\right)\)
\(\sqrt{9a^4}\)
\(\sqrt{100a^2}\left(a< 0\right)\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Tính:
1) ( \(2\sqrt{5}-\sqrt{7}\) ) \(\left(2\sqrt{5}+\sqrt{7}\right)\)
2) \(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
3) \(\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}+2\right)^2}\)
4) \(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
5) \(\left(\sqrt{5}-\sqrt{6}\right)^2\)
6) \(\left(\sqrt{3}-\sqrt{5}\right)^2\)
7) \(\left(2\sqrt{2}+\sqrt{3}\right)^2\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{\left(3+\sqrt{2}\right)^2}\)-\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}\)-\(\sqrt{\left(\sqrt{7}+2\sqrt{2}\right)^2}\)
c)\(\sqrt{\left(3+\sqrt{5}\right)^2}\)+\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
d) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)-\(\sqrt{\left(2+\sqrt{3}\right)^2}\)
Tính :
\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
.