Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Nguyệt
Xem chi tiết
Mai Nguyen
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Thủ Thủy
Xem chi tiết
Đức Lộc
12 tháng 4 2019 lúc 19:40

Có a + b + c = 0

=> a + b = - c

=> (a + b)2 = c2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = - 2ab

Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca

Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac

=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)

Khánh Ngọc
12 tháng 4 2019 lúc 19:42

Tham khảo ở đây bạn nhé :

https://olm.vn/hoi-dap/detail/97677187025.html

~ Study well ~

Léandre Mignon
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 12 2021 lúc 16:37

\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)

Trang
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
Thảo Nguyên Xanh
20 tháng 3 2017 lúc 21:31

 C=\(\frac{ab}{a^2+\left(b-c\right)\left(c+b\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}\)+\(\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)

Vì a+b+c=0 =>-a=b+c ; -c=a+b ; -b=a+c

=>C=\(\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)

=\(\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)

=\(\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}\)

=\(\frac{-3}{2}\)

Nguyễn Khánh Ly
20 tháng 3 2017 lúc 22:00

thanks

Thảo Nguyên Xanh
20 tháng 3 2017 lúc 22:23

cảm ơn thì nhắn tin đi lại còn...

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 16:11

\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)

\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)

Phạm Yến Nhi
Xem chi tiết