cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC=5:4 và BC=82cm. Tính BH
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AB:AC=3:4 và BC=15cm. Tính BH? CH?
Lời giải:
Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2$
$\Leftrightarrow (3a)^2+(4a)^2=225$
$\Leftrightarrow 25a^2=225$
$\Rightarrow a=3$ (do $a>0$)
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9a^2}{15}=\frac{9.3^2}{15}=5,4$ (cm)
$AC^2=CH.CB\Rightarrow CH=\frac{AC^2}{BC}=\frac{16a^2}{15}=\frac{16.3^2}{15}=9,6$ (cm)
Cho tam giác ABC VUÔNG TẠI a, đường cao AH
a) Biết AB;AC=3:4 và BC=125. Tính BH,CH
b)Biết AB:AC=5:6 và AH=30. Tính BH,CH
cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB:AC=3:4 và AH=6cm. Tính BH,HC
Ta có: AB:AC=3:4
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)
\(\Leftrightarrow AC^2=100\)
hay AC=10(cm)
Ta có: \(AB=\dfrac{3}{4}AC\)
nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)
hay BH=4,5(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=10^2-6^2=64\)
hay HC=8(cm)
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
Cho tam giác ABC vuông tại A, đường cao AH. Biết:
a,AB:AC=5:6 ; BC=122. Tính BH; CH
b,AB:AC= 3:7 ; AH= 42 . Tính độ dài hình chiếu cạnh góc vuông trên cạnh huyền
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC). Biết AB:AC = 3:4, BC = 5 cm
a) Tính BH, HC
b) Kẻ phân giác AD (D thuộc BC). Tính HD
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB:AC = 3:4 và AH = 6cm. Tính độ dài các đoạn thẳng BH và CH
Sử dụng hệ thức về cạnh góc vuông và đường cao trong tam giác vuông, tính được BH =4,5cm, CH = 8cm
cho tam giác ABC vuông tại A, đường cao AH. cho biết AB:AC = 3:4 và AH =12cm. Tính độ dài các đoạn thẳng BH,CH
Lời giải:
Do $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{144}=\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{25}{144a^2}$
$\Rightarrow a^2=25\Rightarrow a=5$ (do $a>0$)
$\Rightarrow AB=3a=15; AC=4a=20$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm) - theo định lý Pitago
AB:AC=3/4
=>BH/CH=9/16
=>BH/9=CH/16=k
=>BH=9k; CH=16k
AH^2=BH*HC
=>144k^2=12^2=144
=>k^2=1
=>k=1
=>BH=9cm; CH=16cm
Cho tam giác ABC vuông (Â=90) đường cao AH. Biết AB:AC =3:4 và BC =15cm. Tính BH và CH.?
BA/AC=3/4
nên HB/HC=(3/4)^2=9/16
=>HB/9=HC/16=(HB+HC)/(9+16)=15/25=0,6
=>HB=5,4cm; HC=9,6cm
Cho tam giác ABC vuông tại A đường cao AH
Biết AB:AC=5:7 ;AH=15cm.TínhAB,AC,BC,BH,HC