Bài 5: Ứng dụng thực tế các tỉ số lượng giác của góc nhọn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duy Nguyễn

cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB:AC=3:4 và AH=6cm. Tính BH,HC

Nguyễn Huy Tú
15 tháng 7 2021 lúc 13:21

undefined

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 14:05

Ta có: AB:AC=3:4

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)

\(\Leftrightarrow AC^2=100\)

hay AC=10(cm)

Ta có: \(AB=\dfrac{3}{4}AC\)

nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)

hay BH=4,5(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=10^2-6^2=64\)

hay HC=8(cm)


Các câu hỏi tương tự
Duy Nguyễn
Xem chi tiết
Smiling12233
Xem chi tiết
SodaBXG
Xem chi tiết
nhi nguyễn
Xem chi tiết
Nguyễn Dương
Xem chi tiết
YenVi
Xem chi tiết
Lê thị tuyết nhi
Xem chi tiết
YenVi
Xem chi tiết
Năng Cộng Nguyễn
Xem chi tiết