Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Oriana.su

Cho tam giác ABC vuông tại A. Đường cao AH. Biết AB:AC=3:4 và BC=15cm. Tính BH? CH?

Akai Haruma
20 tháng 9 2021 lúc 0:25

Lời giải:
Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$

Áp dụng định lý Pitago:

$AB^2+AC^2=BC^2$
$\Leftrightarrow (3a)^2+(4a)^2=225$

$\Leftrightarrow 25a^2=225$

$\Rightarrow a=3$ (do $a>0$)

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9a^2}{15}=\frac{9.3^2}{15}=5,4$ (cm)

$AC^2=CH.CB\Rightarrow CH=\frac{AC^2}{BC}=\frac{16a^2}{15}=\frac{16.3^2}{15}=9,6$ (cm)

Akai Haruma
20 tháng 9 2021 lúc 0:27

Hình vẽ: