Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phuong Thanh
Xem chi tiết
Thảo Ngọc
Xem chi tiết
Yuuki
Xem chi tiết
Đặng Tiến
26 tháng 7 2016 lúc 20:04

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

Hoàng C5
14 tháng 9 2018 lúc 22:26

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!

Nuôn
Xem chi tiết
Akai Haruma
13 tháng 9 2021 lúc 9:44

Lần sau bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.

Lời giải:

$x+\sqrt{x}+1>1$ với mọi $x>0, x\neq 1$

$\Rightarrow T=\frac{2}{x+\sqrt{x}+1}< 2$

$x+\sqrt{x}+1>0$ với mọi $x>0, x\neq 1$

$\Rightarrow T>0$

Vậy $0< T< 2$

$T$ nguyên $\Leftrightarrow T=1$

$\Leftrightarrow \frac{2}{x+\sqrt{x}+1}=1$

$\Leftrightarrow x+\sqrt{x}+1=2$

$\Leftrightarrow x+\sqrt{x}-1=0$

$\Rightarrow x=\frac{-1+\sqrt{5}}{2}$

$\Rightarrow x=\frac{3-\sqrt{5}}{2}$ (tm)

bê trần
Xem chi tiết
Nhã Doanh
13 tháng 8 2018 lúc 20:45

\(x^2-2xy+y^2+1=\left(x^2-2xy+y^2\right)+1=\left(x-y\right)^2+1>0\) nhé!

\(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)

Nguyễn Minh Anh
Xem chi tiết
Nguyễn Thị Diệu My
Xem chi tiết
Nguyễn Xuân Tài
Xem chi tiết
YangSu
10 tháng 3 2023 lúc 21:18

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

hoa bui
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 3 2021 lúc 20:51

\(f\left(x\right)=\left(m+2\right)x^2-2\left(m-1\right)x+m-2< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\left(m-1\right)^2-\left(m+2\right)\left(m-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m^2-2m+1-m^2+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\5-2m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow loại\)

Vậy...

Nguyễn Việt Lâm
4 tháng 3 2021 lúc 20:50

- Với \(m=-2\) ko thỏa mãn

- Với \(m\ne-2\) bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m+2< 0\\\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(m-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\-2m+5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu đề bài