Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Lê
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 12 2019 lúc 17:38

 làm ra vở lười viết trên đây 

Khách vãng lai đã xóa
Vũ Hồng Linh
Xem chi tiết
6.5-22 Kiều Quốc Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:10

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

Đỗ Tuệ Lâm
25 tháng 12 2021 lúc 22:04

a,xét hbh ABCD có:

AB//DC,AB=DC

=>AE//FC,AE=FC(AE=EB,DF=FC)

vậy tứ giác AECF là hình bình hành

b, tứ giác AEFD là hình bình hành 

Vì AE=DF,AE//DF(AB//DC,AE=EB,DF=FC)

c,xét tứ giác EBFD có:

EB//DF,EB=DF(AB//CD,AE=EB,DF=FC)

=>EI=KF(gt)

     EI//KF(gt)

vậy EIFK là hình bình hành (1)

lại có:

góc AFD và BFC đối xứng qua DC nên:

AFD=BFC(AFD+BFC=90 độ)

góc DFC=AFD+EFA+BEF+BFC=(EFA+BEF)+(AFD+BFC)=180 độ

       BFA=(EFA+BFE)+90 độ=180 độ

     =>BFA=90 độ(2)

Từ (1)và (2) suy ra:

EIFK là hình chữ nhật

d, đk: có 1 góc vuông tronh ABCD

b9,có hình AABC thật à:<

 

Tố Quyên
Xem chi tiết
HaNa
22 tháng 8 2023 lúc 12:07

.a.

Vì `EF` là đường trung trực MB.

=> `EM=EB`

=> `ΔEMB` cân tại E

=> \(\widehat{EMB}=\widehat{EBM}\)

Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)

Vì `AM=DN` mà AM//DN

=> Tứ giác `AMND` là hình bình hành.

b.

Từ câu (a) suy ra: 

ME//BF

BE//FM

=> Hình bình hành MEBF có `EF⊥MB`

=> Tứ giác MEBF là hình thoi

jfbdfcjvdshh
Xem chi tiết
Quỳnh Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 23:03

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB

Nguyễn Nam
Xem chi tiết
Dương Nguyễn Thảo Nguyên
Xem chi tiết
sđsfsf Ds
Xem chi tiết
Tô Hà Thu
2 tháng 9 2021 lúc 21:03

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 22:30

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét ΔCDM có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NM=NC(1)

Xét ΔANB có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

Suy ra: AM=MN(2)

từ (1) và (2) suy ra AM=MN=NC