Cho hình vuông ABCD có tâm O. Trên cạnh BC và DA , lần lượt lấy hai điểm F và E sao cho BF=DE.
a/Chứng minh tứ giác AECF là hình bình hành.
b/Gọi M và N lần lượt là trung điểm của OA và OC . Chứng minh tứ giác BMDN là hình thoi.
Cho hình vuông ABCD có tâm O. Trên cạnh BC và DA , lần lượt lấy hai điểm F và E sao cho BF=DE.
a/Chứng minh tứ giác AECF là hình bình hành.
b/Gọi M và N lần lượt là trung điểm của OA và OC . Chứng minh tứ giác BMDN là hình thoi.
làm ra vở lười viết trên đây
Cho hình vuông ABCD có tâm O.Trên cạnh BC và DA, lần lượt lấy 2 điểm E,F sao cho BF=DE
a, CM: AECF là HBH
b, Gọi M,N lần lượt là trung điểm của OA và OC chứng minh BMDN là hình thoi
c, Trên tia đói của C lấy điểm K sao cho CK=CF chứng minh tam giác BEK vuông cân
d, Tia KF cắt đoạn thẳng BD tại H gọi I là trung diểm KF chứng minh AH song song với OI
Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.
b/ Tứ giác AEFD là hình gì? Vì sao?
c/ Chứng minh tứ giác EIFK là hình chữ nhật.
d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.
a/ Chứng minh tứ giác BEDF là hình bình hành.
b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD
c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.
Bài 8:
a: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
a,xét hbh ABCD có:
AB//DC,AB=DC
=>AE//FC,AE=FC(AE=EB,DF=FC)
vậy tứ giác AECF là hình bình hành
b, tứ giác AEFD là hình bình hành
Vì AE=DF,AE//DF(AB//DC,AE=EB,DF=FC)
c,xét tứ giác EBFD có:
EB//DF,EB=DF(AB//CD,AE=EB,DF=FC)
=>EI=KF(gt)
EI//KF(gt)
vậy EIFK là hình bình hành (1)
lại có:
góc AFD và BFC đối xứng qua DC nên:
AFD=BFC(AFD+BFC=90 độ)
góc DFC=AFD+EFA+BEF+BFC=(EFA+BEF)+(AFD+BFC)=180 độ
BFA=(EFA+BFE)+90 độ=180 độ
=>BFA=90 độ(2)
Từ (1)và (2) suy ra:
EIFK là hình chữ nhật
d, đk: có 1 góc vuông tronh ABCD
b9,có hình AABC thật à:<
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F. a) Chứng minh tứ giác AMND là hình bình hành. b) Chứng minh rằng tứ giác MEBF là hình thoi. c) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi
Cho hình bình hành ABCD. Trên cạnh AB và CD lần lượt lấy các điểm E; F sao cho AE = CF.
a)Chứng minh: AF = EC.
b)Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh tứ giác EMFN là hình bình hành.
c) Ở phía ngoài của hình bình hành dựng 2 tam giác đều ADP và DCQ. Chứng minh rằng tam giác BPQ là tam giác đều.
Cho hình bình hành ABCD có AB=2AD.Gọi E và F lần lượt là trung điểm của AB và CD. I là giao điểm của AF và DE,K là giao điểm của BF và CE. a)Chứng minh rằng tứ giác AECF là hình bình hành. b)Tứ giác AEFD là hình gì ? Vì sao? c) Chứng minh rằng tứ giác EIFK là hình chữ nhật. d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
a: Ta có: ABCD là hình bình hành
=>AB=CD(1)
Ta có: E là trung điểm của AB
=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)
Ta có: F là trung điểm của CD
=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=EB=FC=FD
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFDlà hình bình hành
Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)
nên AEFD là hình thoi
c: Xét tứ giác EBCF có
BE//FC
BE=FC
Do đó: EBCF là hình bình hành
Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)
nên EBCF là hình thoi
=>EC\(\perp\)BF tại trung điểm của mỗi đường
=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF
Ta có: AEFD là hình thoi
=>AF\(\perp\)ED tại trung điểm của mỗi đường
=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED
Ta có: AEFD là hình thoi
=>EF=AD
mà AD=DC/2
nên EF=DC/2
Xét ΔEDC có
EF là đường trung tuyến
\(EF=\dfrac{CD}{2}\)
Do đó: ΔEDC vuông tại E
Xét tứ giác EIFK có
\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)
=>EIFK là hình chữ nhật
d: Để EIFK là hình vuông thì FI=FK
mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)
nên FA=FB
=>ΔFAB cân tại F
Ta có: ΔFAB cân tại F
mà FE là đường trung tuyến
nên FE\(\perp\)AB
ta có: FE\(\perp\)AB
FE//AD
Do đó: AD\(\perp\)AB
Cho hình chữ nhật ABCD trên AB lấy điểm E trên CD lấy điểm F sao cho AE=CF
a) Chứng minh tứ giác AECF là hình bình hành
b) Gọi P là trung điểm cùa AF; Q là trung điểm của CE tứ giác DPQC là hình gì?
c) Gọi O là tâm đối xứng của hình chữ nhật ABCD; I,K,G lần lượt là hình chiếu của B,D và O trên AF Chứng minh G là trung điểm của IK
Hình bình hành ABCD có AB=2AD. Gọi F,F lần lượt là trung điểm của AB và CD
a) Chứng minh tứ giác AECF là hình bình hành
b) Chứng minh AF vuông góc với DE
c) Gọi M là giao điểm của BF và CE. Chứng minh EF=MN
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC . Gọi M N, lần lượt là giao điểm của AC với DE và BF .
a) Chứng minh tứ giác DEBF là hình bình hành.
b) Chứng minh AM=MN=NC .
c) MN cắt EF tại O . Chứng minh B đối xứng với D qua O .
Giúp mình pls tks
AECF là hình bình hành => EN // AM
E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.
Tương tự, M là trung điểm của DN, do đó DM = MN.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔCDM có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NM=NC(1)
Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
Suy ra: AM=MN(2)
từ (1) và (2) suy ra AM=MN=NC