Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.
b/ Tứ giác AEFD là hình gì? Vì sao?
c/ Chứng minh tứ giác EIFK là hình chữ nhật.
d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.
a/ Chứng minh tứ giác BEDF là hình bình hành.
b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD
c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.
Bài 8:
a: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
a,xét hbh ABCD có:
AB//DC,AB=DC
=>AE//FC,AE=FC(AE=EB,DF=FC)
vậy tứ giác AECF là hình bình hành
b, tứ giác AEFD là hình bình hành
Vì AE=DF,AE//DF(AB//DC,AE=EB,DF=FC)
c,xét tứ giác EBFD có:
EB//DF,EB=DF(AB//CD,AE=EB,DF=FC)
=>EI=KF(gt)
EI//KF(gt)
vậy EIFK là hình bình hành (1)
lại có:
góc AFD và BFC đối xứng qua DC nên:
AFD=BFC(AFD+BFC=90 độ)
góc DFC=AFD+EFA+BEF+BFC=(EFA+BEF)+(AFD+BFC)=180 độ
BFA=(EFA+BFE)+90 độ=180 độ
=>BFA=90 độ(2)
Từ (1)và (2) suy ra:
EIFK là hình chữ nhật
d, đk: có 1 góc vuông tronh ABCD
b9,có hình AABC thật à:<