Tính
a) \(\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\)
b) \(72:\sqrt{2^2.36.3^2}-\sqrt{225}\)
Tính:
a, \(\sqrt{49}\) . \(\sqrt{144}\) + \(\sqrt{256}\) : \(\sqrt{64}\)
b, 72 : \(\sqrt{2^2.36.3^2}\) - \(\sqrt{225}\)
Tính:
a, √49 . √144+ √256 : √64
= 7 . 12 + 16 : 8
= 84 + 2
= 86
b, 72 : √2^2.36.3^2- √225
= 72: 2.6.3-15
= -13
Tính:
\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\)
\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ =7.12+16:8\\ =84+2\\ =86\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\\ =72:\sqrt{1296}-25\\ =72:36-25\\ =2-25\\ =-23\)
tính
a, \(\sqrt{169}\) - \(\sqrt{225}\)
b \(\dfrac{\sqrt{144}}{9}\)
c \(\sqrt{18}\) \(\div\) \(\sqrt{2}\)
a: \(\sqrt{169}-\sqrt{225}\)
\(=\sqrt{13^2}-\sqrt{15^2}\)
=13-15
=-2
b: \(\dfrac{\sqrt{144}}{9}\)
\(=\dfrac{\sqrt{12^2}}{9}\)
\(=\dfrac{12}{9}=\dfrac{4}{3}\)
c: \(\sqrt{18}:\sqrt{2}=\sqrt{\dfrac{18}{2}}=\sqrt{9}=3\)
a, \(\sqrt{144}.\sqrt{\frac{49}{69}}.\sqrt{0.01}\)
b,\(\sqrt{0.25}-\sqrt{225}+\sqrt{2.25}\)
c,\(72:\sqrt{3^3+3^2}-3\sqrt{5^2-3^2}\)
Lời giải:
a)
\(\sqrt{144}.\sqrt{\frac{49}{69}}\sqrt{0,01}=12.\frac{7}{\sqrt{69}}.0,1=\frac{8,4}{\sqrt{69}}=\frac{42\sqrt{69}}{345}\)
b)
\(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}=\sqrt{0,5^2}-\sqrt{15^2}+\sqrt{1,5^2}\)
\(=0,5-15+1,5=-13\)
c)
\(72:\sqrt{3^3+3^2}-3\sqrt{5^2-3^2}\)
\(=\frac{72}{\sqrt{36}}-3\sqrt{16}=\frac{72}{6}-3.4=12-12=0\)
tính
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
b) 36 : \(\sqrt{2.3^2.18}-\sqrt{169}\)
c) \(\sqrt{\sqrt{81}}\)
d) \(\sqrt{3^2+4^2}\)
a: \(=4\cdot5+14:7\)
=20+2
=22
thực hiện phép tính
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B=\(\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
\(B=\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)
\(=\left(5+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(5-2\sqrt{6}\right)\)
\(=\sqrt{3}-\sqrt{2}\)
Giúp mk với mấy bạn ơi❤️
a, \(\sqrt{64}-\sqrt{16}+\sqrt{\left(-5\right)^2}\) b, \(\sqrt{49}+\sqrt{4}-\sqrt{9}.\sqrt{144}\)
c, \(\sqrt{12}+\sqrt{\left(-5\right)^2}-\sqrt{9}+\sqrt{125}\)
\(a,\sqrt{64}-\sqrt{16}+\sqrt{\left(-5\right)^2}\)
\(=8+4+5\)
\(=17\)
\(b,\sqrt{49}+\sqrt{4}-\sqrt{9}.\sqrt{144}\)
\(=7+2-3.12\)
\(=9-36\)
\(=-27\)
\(a;\sqrt{64}-\sqrt{16}+\sqrt{\left(-5\right)^2}\)
\(=8-4+5\)
\(=9\)
\(b;\sqrt{49}+\sqrt{4}-\sqrt{9}.\sqrt{144}\)
\(=7+2-3.12\)
\(=7+2-36\)
Bài 1 : tính
a)\(\sqrt{49-12\sqrt{5}}+\sqrt{49+12\sqrt{5}}\)
b)\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)
a) \(=\sqrt{\left(3\sqrt{5}-2\right)^2}+\sqrt{\left(3\sqrt{5}+2\right)^2}=3\sqrt{5}-2+3\sqrt{5}+2=6\sqrt{5}\)
b) \(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
d. ĐKXĐ: $x>\frac{-2}{3}$
PT $\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{1}{2}\sqrt{9}.\sqrt{\frac{1}{3x+2}}+\sqrt{16}.\sqrt{\frac{1}{3x+2}}-5\sqrt{\frac{1}{4}}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{3}{2}\sqrt{\frac{1}{3x+2}}+4\sqrt{\frac{1}{3x+2}}-\frac{5}{2}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \frac{1}{3x+2}=1$
$\Leftrightarrow 3x+2=1$
$\Leftrightarrow x=-\frac{1}{3}$
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)