\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ =7.12+16:8\\ =84+2\\ =86\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\\ =72:\sqrt{1296}-25\\ =72:36-25\\ =2-25\\ =-23\)
\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ =7.12+16:8\\ =84+2\\ =86\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\\ =72:\sqrt{1296}-25\\ =72:36-25\\ =2-25\\ =-23\)
a, \(\sqrt{144}.\sqrt{\frac{49}{69}}.\sqrt{0.01}\)
b,\(\sqrt{0.25}-\sqrt{225}+\sqrt{2.25}\)
c,\(72:\sqrt{3^3+3^2}-3\sqrt{5^2-3^2}\)
* Rút gọn biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)
* Rút gọn các biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)
* Rút gọn các biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)
Bài 1:
a, \(\frac{1}{2}\sqrt{72}+\frac{3}{4}\sqrt{48}+\sqrt{162}-\sqrt{75}\)
b, \(\sqrt[3]{125}+\sqrt[3]{-343}-2\sqrt[3]{64}+\frac{1}{3}\sqrt[3]{126}\)
Bài 1:
a, \(\frac{1}{2}\sqrt{72}+\frac{3}{4}\sqrt{48}+\sqrt{162}-5\sqrt[]{3}\)
b, \(\sqrt[3]{125}+\sqrt[3]{-343}-2\sqrt[3]{64}+\frac{1}{3}\sqrt[3]{216}\)
Tính giá trị biểu thức:
\(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
\(B=2\sqrt{9}+3\sqrt{36}-\sqrt{64}\)
Tính a=\(\dfrac{\sqrt[3]{10+6\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-5}\)
b, a= \(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\) CMR \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) ∈ Z
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)