Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Mon SLVO
2 tháng 1 2017 lúc 18:31

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

Suy Pham Ngoc
Xem chi tiết
Akai Haruma
15 tháng 8 2023 lúc 18:59

Tính giá trị của $x+y-2=0$ là sao nhỉ? $x+y-2=0$ sẵn rồi mà bạn?

Akai Haruma
15 tháng 8 2023 lúc 19:24

Cho biểu thức N (không có điều kiện gì) rồi kêu tính x+y-2 thì nó không có dữ liệu gì để tính toán bạn ạ

Ví dụ bạn cho biểu thức N biết x+y-2=0 và yêu cầu tính giá trị N thì còn có vẻ hợp lý.

Toru
16 tháng 8 2023 lúc 12:43

Cho x + y - 2 = 0 . Tính giá trị của N = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017.

(Bạn nên sửa đề bài thành như trên thì mới tính hợp lí được nhé)

Lời giải:

Ta có: N = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019

= 0 - 0 + 0 + 2019 (do x + y - 2 = 0)

= 2019

Vậy N = 2019 khi x + y - 2 = 0.

phan anh thư
Xem chi tiết
Xyz OLM
9 tháng 7 2023 lúc 9:29

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)

Tạ Thu Hương
Xem chi tiết
Nguyễn Ngọc Lộc
20 tháng 7 2020 lúc 16:18

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

Nguyễn Lê Phước Thịnh
20 tháng 7 2020 lúc 16:24

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

kobikdau
Xem chi tiết
Lý Bảo Thy
Xem chi tiết
Khánh Đăng
Xem chi tiết
Lê Hoàng Thảo Nguyên
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải