cho x,y>0 thoả mãn x+y=1 tìm GTNN của A=(x+1/x)(y+1/y)
giúp với ạ.cần gấp,hứa tick
Cho x,y >0 thoả mãn x+y ≤ 1. Tìm GTNN của P=\(\dfrac{1}{x^2+y^2}\)+ \(\dfrac{1}{xy}\)+ 4xy.
`P=1/(x^2+y^2)+1/(xy)+4xy`
`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`
Áp dụng bunhia dạng phân thức
`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`
Mà `(x+y)^2<=1`
`=>1/(x^2+y^2)+1/(2xy)>=4`
Áp dụng cosi:
`4xy+1/(4xy)>=2`
`4xy<=(x+y)^2<=1`
`=>1/(4xy)>=1`
`=>P>=4+2+1=7`
Dấu "=" `<=>x=y=1/2`
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Cho x,y>0 thoả mãn x+y+xy=1
Tìm GTNN của \(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Làm giúp mik với. chìu nay mik đi hok tùi
Cho x,y>0 thoả mãn x+y+xy=1
Tìm GTNN của \(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Làm giúp mik với. chìu nay mik đi hok rùi
cho x,y >0 thoả mãn x+2y>=5 tìm GTNN của x^2 +2y^2+1/x+24/y
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Tìm GTNN của P= x^3+y^3+2x^2.y^2 biết rằng x và y là các số thực thỏa mãn điều kiện x +y =1
Giúp tui nha, hứa sẽ tick
Trả lời:
Áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có:
(3+1)(3x2+y2)≥(3x+y)2
⇒4(3x2+y2)≥(3x+y)2⇒4(3x2+y2)≥(3x+y)2
⇒4(3x2+y2)≥(3x+y)2=12=1⇒4(3x2+y2)≥(3x+y)2=12=1
⇒M=3x2+y2≥14⇒M=3x2+y2≥14
Đẳng thức xảy ra khi x=y=14
Ta có: x + y = 1 => y = 1 - x
Khi đó: P = \(x^3+y^3+2x^2y^2=\left(x+y\right)^3-3xy\left(x+y\right)+2\left(xy\right)^2\)
\(=2\left(xy\right)^2-3xy+1=2\left[\left(xy\right)^2-2.xy.\frac{3}{4}+\frac{9}{16}\right]-\frac{1}{8}\)
\(=2\left(xy-\frac{3}{4}\right)^2-\frac{1}{8}\)
\(=2\left[x\left(1-x\right)-\frac{3}{4}\right]^2-\frac{1}{8}\)
\(=2\left[-x^2+x-\frac{3}{4}\right]^2-\frac{1}{8}\)
\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\right]^2-\frac{1}{8}\ge\frac{3}{8}\)
Dấu "=" xảy ra <=> x = y =1/2
Thiếu:
Kết luận: Vậy GTNN của P = 3/8 đạt tại x = y = 1/2.
Cho x,y>0 Thoả mãn x+y=1
Tìm GTNN: (1-1/x2)*(1-1/y2)
\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{x-1}{x}\frac{y-1}{y}\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{xy-x-y+1}{xy}\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\)
\(=\frac{-\left(x+y\right)+1}{xy}\left(\frac{xy+x+y+1}{xy}\right)=1+\frac{2}{xy}\)
mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow1+\frac{2}{\frac{1}{4}}=9\)Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
Cho x, y là các số thực dương thoả mãn x + 1/y = 1. Tìm GTNN của P = x/y + y/x
Em dùng công thức toán học để ghi đề bài sẽ giúp hiểu đúng đề được em nhé.
Giúp mk vs mk đg cần gấp!!!
Cho `x,y,z>0` thỏa mãn `x+y+z<=3/2`. Tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z.`
(Sử dụng BĐT Cosi)
Cho các số dương x,y thoả mãn x+y=1.Tìm GTNN của P=[2x+(1/x)]^2+[2y+(1/y)]^2. CÁC BẠN GIÚP MÌNH BÀI NÀY ĐC KO?MÌNH ĐANG CẦN GẤP!!!!!!!!
\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra tại x=y=1/2
Có vẻ kết quả bị sai Huy ơi.
Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!