Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Lâm
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 12:52

Lời giải:

$2xyz=x+y+z$

$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$

Không mất tổng quát giả sử $x\geq y\geq z$ 

$\Rightarrow xy\geq xz\geq yz$

$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$

$\Rightarrow 2\leq \frac{3}{yz}$$

$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$

$\Rightarrow y=z=1$. Thay vào pt ban đầu:

$2x=x+2$

$x=2$

Vậy $(x,y,z)=(2,1,1)$ và hoán vị.

Trịnh Minh Hiếu
Xem chi tiết
Thomas Lê - D
Xem chi tiết
Trần Việt Linh
8 tháng 8 2016 lúc 13:40

\(x^2+y^2+z^2=2xyz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)

Hoàng Lê Bảo Ngọc
8 tháng 8 2016 lúc 20:02

2xyz chứ có phải 2xy đâu :)

Lê Thế Minh
Xem chi tiết
Đinh Đức Hùng
30 tháng 4 2018 lúc 21:40

Áp dụng BĐT \(\frac{a}{b+c}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\forall a;b;c>0\) ta có :

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự ta cũng có : \(\hept{\begin{cases}\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{x+y}\right)\\\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{z+y}\right)\end{cases}}\)

Cộng các vế tương ứng của các BĐT vừa CM đc ta có :

\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{x+z}{x+z}\right)=\frac{3}{4}\)

Hay \(VT\le VP\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z\in Z^+\)

Nguyen Tra My
Xem chi tiết
Mạch Duy Hùng
5 tháng 4 2015 lúc 9:55

xy+yz+xz=2xyz

<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)

<=>1/z+1/x+1/y=2                                   (1)

Giả sử x<hoặc=y<hoặc=z

=>1/x>hoặc bằng 1/y>hoặc bằng 1/z

=>1/x+1/x+1/x>hoặc=2

=>3/x>=2

Mà x thuộc N*

=>x=<1

=>x=1

Thay vào (1),ta được:

1/z+1+1/y=2

=>1/y+1/z=1                                  (2)

=>1/y+1/y>=1

=>2/y>=1

=>y=<2

=>y=2 hoặc y=1

+ y=1

Thay vào (2)

1/1+1/z=1

=>1/z=0 (loại)

+ y=2

Thay vào (2)

1/2+1/z=1

=>z=2 (thỏa mãn)

Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng

Nguyen Tra My
5 tháng 4 2015 lúc 11:13

Mach Duy Hung: em cam on ak!

Cong chua xinh dep
7 tháng 3 2017 lúc 17:24

xin loi minh ko hieu

nho k minh nha

Trần Trung Kiên
Xem chi tiết
trần thành đạt
Xem chi tiết
Nguyễn Anh Quân
Xem chi tiết
Đỗ Đức Đạt
17 tháng 11 2017 lúc 20:17

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

Đây là bài gần giống nhé

Phan Tiến Ngọc
Xem chi tiết