Phân tích đa thức thành nhân tử:
a) 3x + 5\(\sqrt{x}\) - 2
b) 16 - x²
c) x² + \(\)\(\)\(\sqrt{x}\)
Phân tích đa thức thành nhân tử:
a) \(x+3\sqrt{x}-4\)
b) \(x\sqrt{x}-1\)
a: =(căn x+4)(căn x-1)
b: =(căn x-1)(x+căn x+1)
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
Phân tích đa thức thành nhân tử:
a) 3x mũ 4 - 12x mũ 2
b) x bình phương - 2xy + 3x - 6y
a) 3x^4 - 12x^2 = 3x^2.(x^2 - 4) = 3x^2.(x - 2)(x + 2)
b) x^2 - 2xy + 3x - 6y
= x(x - 2y) + 3(x - 2y)
= (x - 2y)(x + 3)
a) 3x^4 - 12x^2
= 3x^2.x^2- 3.4x^2
= x^2-4
b) x ^2 - 2xy + 3x - 6y
=(x^2-2xy) +(3x-6y)
=x.(x-2y)+3(x-2y)
=(x-2y).(x+3)
Phân tích đa thức thành nhân tử:
a) \(x^2-3\)
b) \(ab+b\sqrt{a}+\sqrt{a}+1\)
a)=(x-√3)(x+√3)
b)=b√a(√a+1)+(√a+1)
=(√a+1)(b√a+1)
Phân tích đa thức sau thành nhân tử:
a) (xy +1)^2 - (x-y)^2
b) (x + y)^3 - (x - y)^3
c) 3x^4y^2 + 3x^3y^2 + 3xy^2 + 3y^2
a, \(=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
b, \(\left(x+y-x+y\right)[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2]\)
\(=2y[x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2]\)
\(=2y\left(3x^2+y^2\right)\)
c,\(=3\left(x+1\right)^2\left(x^2-x+1\right)y^2\)
câu a, b áp dụng hằng đẳng thức rồi làm nha
c) 3x4y2 + 3x3y2 + 3xy2 + 3y2
= ( 3x4y2 + 3x3y2 ) + ( 3xy2 + 3y2 )
= 3x3y2 ( x + 1) + 3y2 ( x + 1 )
= ( 3x3y2 + 3y2 ) ( x + 1 )
= 3y2 ( x3 + 1 ) ( x + 1 )
= 3y2 ( x + 1 ) ( x2 - x + 1 ) ( x + 1 )
= 3y2 ( x + 1 )2 ( x2 - x + 1 )
a) (xy +1)2- (x-y)2
=(xy +1-x+y)(xy+1+x-y)
b) (x + y)3 - (x - y)3
= (x+y-x+y)((x+y)2+(x+y)(x-y)+(x - y)2)
= 2y(x2+2xy+y2+x2+xy-xy-y2+x2-2xy+y2)
=2y(3x2+y2)
c) 3x4y2 + 3x3y2 + 3xy2 + 3y2
=3y2(x4+x3+x+1)
= 3y2(x3(x+1)+(x+1)
= 3y2(x+1)(x3+1)
ko bt đúng ko
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2- 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 +2x^3 + 2x^2
d) x^3 + 3x^2 + 3x +1 - 8y^3
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
c) Ta có: \(x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)
d) Ta có: \(x^3+3x^2+3x+1-8y^3\)
\(=\left(x+1\right)^3-\left(2y\right)^3\)
\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2 - 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 + 2x^3 + 2x^2
d) x^3 + 3x^2 + 3x + 1 - 8y^3
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
Phân tích đa thức thành nhân tử:
a)x.(x-1)+(1-x)^2
b)(x+1)^2-3.(x+1)
c)2x.(x-2)-(x-2)^2
a) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
b) \(\left(x+1\right)^2-3\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)-3\right]\)
\(=\left(x+1\right)\left(x+1-3\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
c) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
Phân Tích đa thức thành nhân tử:
a.4xy-10x^2
b.3x(x+1)+6y(x+1)
c.25x^2-y^2
d. 5xy^2-10xyz+5xz^2
e. x^2-5x+6
f. 12x^2y+8x^3+6xy^2+y^3
c: \(=\left(5x-y\right)\left(5x+y\right)\)
e: \(=\left(x-2\right)\left(x-3\right)\)
a) x(4y-10x)
b)3(x+2y)+(x+1)
c)(5x-y)(5x+y)
d)5x(y-z)2
e)(x-3)(x-2)
f)(2x+y)3
Phân tích đa thức thành nhân tử:
a)x2-9+2.(x+3)
b)x2-10x+25-3.(x-5)
c)x3-4x2+3x
a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)
b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)
c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)