ABC-ABC+1=...............................
ABC | ABC |
ABC | ABC |
ABC | ABC |
giải được cho 1 tỉ like
ABC | ABC |
ABC | ABC |
ABC | ABC |
giải được cho 1 tỉ
wow ,1 tỉ cơ á ,nếu chị giải đk em có hưa cho 1 tỉ như em đã nói
ABC | ABC |
ABC | ABC |
ABC | ABC |
giải được cho 1 tỉ like
Thì chẳng có gì sao mà giải được . Phải không các bạn ?
cho a,b,c là các số dương tm abc=1. Tìm gtln của bt 1/(a^3+b^3+abc) + 1/(b^3+c^3+abc) + 1/(c^3+a^3+abc)
Với các số dương x;y ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
Áp dụng:
\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)
\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)
\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(P_{max}=1\) khi \(a=b=c=1\)
cho a,b,c là số thực dương,chứng minh rằng:
\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
TÌM ABC BIẾT 481 ABC CHIA ABC
=1481(LƯU Ý ABC LÀ 1 SỐ)
<=> ( 481000 + abc ) : abc = 1481
<=> 481000 : abc + abc : abc = 1481
<=> 481000 : abc + 1 = 1481
<=> 481000 : abc = 1480
=> abc = 481000 : 1480
=> abc = 325
Vậy abc = 325
<=>(481000+ABC)/..................
<=>481000 CHIA HẾT CHO ABC+ABC......
<=>481000 CHIA HẾT CHO ABC+1=1481
=<=>ABC=481000 CHIA 1480
=>ABC=325
=>
Tim ABC biet 1 ABC = ABC X9 ( 165 )
Ta có:1abc=abc x 9
1000+abc=abc x 9
1000=abc x 9-abc
1000=abc x(9-1)
1000=abc x 8
abc=1000:8
abc=125
Vậy abc=125
May tra loi sai bet dung la thang ngu nguoi.
Với a , b , c là các số thực dương: Chứng minh rằng với \(abc=1\)
\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)
Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a^2-ab+b^2\ge ab\\b^2-bc+c^2\ge bc\\c^2-ca+a^2\ge ca\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\\\left(b+c\right)\left(b^2-bc+c^2\right)\ge bc\left(b+c\right)\\\left(c+a\right)\left(c^2-ca+a^2\right)\ge ca\left(c+a\right)\end{matrix}\right.\)
Áp dụng hẳng đẳng thức tổng 2 lập phương
\(\Rightarrow\left\{\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\c^3+a^3\ge ca\left(c+a\right)\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b\right)+abc\\b^3+c^3+abc\ge bc\left(b+c\right)+abc\\c^3+a^3+abc\ge ca\left(c+a\right)+abc\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b+c\right)\\b^3+c^3+abc\ge bc\left(a+b+c\right)\\c^3+a^3+abc\ge ca\left(a+b+c\right)\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{abc}{ab\left(a+b+c\right)}\\\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}=\dfrac{abc}{bc\left(a+b+c\right)}\\\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{abc}{ca\left(a+b+c\right)}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)
\(\Rightarrow VT\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow VT\le\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
\(\Rightarrow\) ( đpcm )
a+ab+abc=270
Tìm a,ab,abc , biết ab + abc kém abc 100 và a + ab kém TBC của a,ab,abc là 1
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Cho a, b, c>0. CMR:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
Cho a,b,c > 0 . CM :
\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)
⇒ \(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)
Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)
\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)
⇒ \(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)