(4n + 4 )^2-16
n4-4n3-4n2+16n/16 chia hết cho 24
Tìm n để C nguyên:
\(C=\frac{n^4-16}{n^4-4n^3+8n^2+16}\)
CMR:\(n^8+4n^7+6n^6+4n^5+n^4\)⋮16 với n∈Z
\(n^8+4n^7+6n^6+4n^5+n^4=n^4\left(n^4+4n^3+6n^2+4n+1\right)=n^4\left(n+1\right)\left(n^3+3n^2+3n+1\right)=n^4\left(n+1\right)\left(n+1\right)^3=n^4\left(n+1\right)^4=\left[n\left(n+1\right)\right]^4\)
Ta có \(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow\left[n\left(n+1\right)\right]^4⋮16\)
Vậy \(n^8+4n^7+6n^6+4n^5+n^4⋮16\)
a) giải phương trình nghiệm nguyên: x2+6y2-5xy-5y=3-3x
b) tìm số tự nhiên n để: n4+4n3+8n2+16n+16 chia hêt cho n4-16
Chứng minh rằng n8+4n7+6n6+4n5+n4 chia hết cho 16
Tacó : A = n4 ( n4 +4n3 +6n2 +4n + 1 )
= n4 ( n4 + n3+ 3n3 + 3n2 +3n2 + 3n + n +1)
= n4 ( n + 1 )(n3 +3n2 + 3n + 1 ) = n4 ( n+1 ) (n+1)3
= n4 ( n + 1 )4 = [ n(n +1)]4
Vì n( n+1) là tích 2 số nguyên liên tiếp nên có một thừa số chia hết cho 2.
Do đó : A = [n ( n + 1 )]4 chia hết cho 24 =16 . Vậy : A chia hết cho 16
tìm n thuộc N biết
a) 16-3n chia het cho -4
b) 5n-2 chia hết cho 4n-1
Chứng tỏ rằng:
1-\(\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}< \frac{1}{4}\)
Đặt A là tên biểu thức
\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)
Tìm số tự nhiên n biết:
\(C=\frac{n^4-1}{n^4-4n^3+8n^2+16}\) có giá trị là một số nguyên
chứng minh rằng ,với mọi số n nguyên
a/ (4n+3)^2-25 chia hết cho 8
b/(2n+3)^2-9 chia hết cho 4
c/(3n+4)^2-16 chia hết cho 3
\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)
\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)
\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)
\(=3n\left(3n+8\right)⋮3\)
ChoA=(2n+2).(4n+8),CMR A chia hết cho 16
Có \(A=\left(2n+2\right).\left(4n+8\right)=8.\left(n+1\right).\left(n+2\right)\)
Lại có n + 1 , n + 2 là 2 số tự nhiên liên tiếp
nên (n + 1).(n + 2) \(⋮2\forall n\inℕ\)
\(\Leftrightarrow A=8\left(n+1\right)\left(n+2\right)⋮16\)