x2-2(m-1)x-2m=0. Tìm m để phương trinh có 2 nghiệm phân biệt thỏa mãn x12-x1-x2 =5-2m
Cho phương trình x2 -2(m-1)x - 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1 x2 sao cho x12 + x1 - x2 = 5 - 2m
Theo viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)
Ta có: \(x_1^2+x_1-x_2=5-2m\)
\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)
\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)
\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)
\(\Rightarrow x_1x_2=12=-2m\)
\(\Rightarrow m=-6\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)
\(\Rightarrow x_1.x_2=0=-2m\)
\(\Rightarrow m=0\)
Vậy \(m=0;m=-6\)
-Chúc bạn học tốt-
cho pt: x2-2(m+1)x+2m-5=0
1) tìm m để phương trình (1) có 1 nghiệm x= 2 tìm nghiệm còn lại.
2) Chứng tỏ rằng phương trình luôn có hai nghiệm phân biệt với mọi m . tìm m m để x1 , x2 thỏa mãn x12+(2m+2)x2 -7 = 0
giúp em với mai em thi rồi.
Cho phương trình : x2-2(m-5)x-2m +9 =0.
Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12 +2(m-5)x2 =4m2
\(\Delta'=\left(m-5\right)^2+2m-9=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)
Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-5\right)\\x_1x_2=-2m+9\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2\left(m-5\right)x_1-2m+9=0\Rightarrow x_1^2=2\left(m-5\right)x_1+2m-9\)
Thay vào bài toán:
\(2\left(m-5\right)x_1+2m-9+2\left(m-5\right)x_2=4m^2\)
\(\Leftrightarrow2\left(m-5\right)\left(x_1+x_2\right)+2m-9=4m^2\)
\(\Leftrightarrow2\left(m-5\right).2\left(m-5\right)+2m-9=4m^2\)
\(\Leftrightarrow-38m+91=0\)
\(\Rightarrow m=\dfrac{91}{38}\)
Cho phương trình: x2-2(m-1)x-2m=0 với m là tham số.Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x12+x1-x2=5-2m.
Cho phương trình: x 2 – 2mx + 2m – 1 = 0. Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn 2 ( x 1 2 + x 2 2 ) − 5 x 1 . x 2 = − 1
A. m = 1
B. m = 5 4
C. m = −4
D. m = - 7 4
Tìm m đề phương trình 2 log 4 ( 2 x 2 - x + 2 m - 4 m 2 ) + log 1 2 ( x 2 + m x - 2 m 2 ) có 2 nghiệm phân biệt x 1 , x 2 thỏa mãn x 1 2 + x 2 2 > 1
A. ( - 1 ; 0 ) ∪ ( 2 5 ; 1 2 )
B. ( - 1 ; 0 )
C. ( - 1 ; 0 ) ∪ ( 5 2 ; 4 )
D. ( 2 5 ; 1 2 )
Cho phương trình: \(x^2\) - (2m+3)x - 2m - 4 = 0 (m là tham số).
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 5
a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`
Có tất cả bao nhiêu giá trị của tham số m để phương trình \(x^2+\left(2m-3\right)x-2m+2=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn x12+x12=17 ?
A.2
B.1
C.0
D.3
Trước hết ta xét ĐK của m để pt có hai nghiệm phân biệt
Ta có : Δ = b2 - 4ac = ( 2m - 3 )2 - 4( -2m + 2 )
= 4m2 - 12m + 9 + 8m - 8
= 4m2 - 4m + 1 = ( 2m - 1 )2 > 0 ∀ m ≠ 1/2
Vậy ∀ m ≠ 1/2 thì pt có hai nghiệm phân biệt
Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2m+3\\x_1x_2=\dfrac{c}{a}=-2m+2\end{matrix}\right.\)
Khi đó x12 + x22 = 17
<=> ( x1 + x2 )2 - 2x1x2 - 17 = 0
<=> ( -2m + 3 )2 - 2( -2m + 2 ) - 17 = 0
<=> 4m2 - 12m + 9 + 4m - 4 - 17 = 0
<=> 4m2 - 8m - 12 = 0
<=> m2 - 2m - 3 = 0
<=> ( m - 3 )( m + 1 ) = 0
<=> m = 3 hoặc m = -1 (tm)
=> Chọn A.2
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình x2-2(m+1)x+2m+7
a,Tìm m để phương trình có 2 nghiệm đều dương
b,Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn x12+3x1-x2=7-2m