Cho △ABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Vẽ DE \(\perp\) BC
a) Chứng minh: DA = DE
b) Gọi F là giao điểm của DE và Ab. Chứng minh: BD là trung trực của CF
c) So sánh BC và DE + DC
Cho tam giác ABC vuông tại A, AB<AC. Tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc với BC
a) Chứng minh AB=BE.
b) Chứng minh BD là đường trung trực của AE.
c) Tia ED vắt tia BA tại điểm K. Chứng minh °DKC cân và DA<DC.
d) Chứng minh BD vuông góc với CK .
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈ BC). Chứng minh △ BAD = △ BED
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈BC)
a) Chứng minh △BAD=△BED
b) Chứng minh BD là đường trung trực của đoạn thẳng AE
c) Gọi F là giao điểm của hai đường thẳng AB và DE . Chứng minh AE // FC
Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:
b. BD là đường trung trực của AE
b. Ta có AB = BE ⇒ B nằm trên đường trung trực của AE (0.5 điểm)
Do ∆ABD = ∆EBD nên AD = DE (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AE
Vậy BD là đường trung trực của AE (0.5 điểm)
Cho tam giác ABC vuông tại A , tia phân giác của góc ABC cắt AC tại D . Vẽ DE vuông góc BC tại E . Gọi F là giao của AB và DE . Gọi H là giao điểm của hai đường thẳng BD và CF . Trên tia đối của tia DF lấy điểm K sao cho DK = DF . Gọi I là giao điểm của KH và CD :
a) So sánh DE và DF
b ) Chứng minh CI = 2DI
Cho ∆ABC vuông tại A, phân giác BD(D thuộc AC) Vẽ DE vuông góc BC( D thuộc BC). Chứng minh rằng a, ∆ABC=∆EBD b, BD là đường trung trực của AE c, Gọi F là giao điểm của BA và ED chứng minh DE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
cho tam giác ABC vuông tại A(AB<AC), tia phân giác góp ABC cắt AC tại D . vẽ DE vuông góc với BC tại E. Gọi F là giao điểm của đường thẳng AB và DE
a, Chứng minh tam giác ABD= tam giác EBD và tam giác CDF là tam giác cân
b, So sánh DE và DF
Mình cần câu b, thôi
a: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
b: Ta có: DE=DA
mà DA<DF
nên DE<DF
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
1) Xét tam giác ABE và tam giác DBE có:
+ BM chung.
+ AB = DB (gt).
+ ^ABE = ^DBE (do BE là phân giác ^ABD).
=> Tam giác ABE = Tam giác DBE (c - g - c).
2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).
=> Tam giác ABD cân tại B.
Mà BE là phân giác ^ABD (gt).
=> BE là đường cao (Tính chất các đường trong tam giác cân).
Lại có: BE cắt AD tại M (gt).
=> BE vuông góc AD tại M (đpcm).
3) Xét tam giác FBC có:
+ BN là trung tuyến (do N là trung điểm của CF).
+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).
=> Tam giác FBC cân tại B.
=> BN là đường cao (Tính chất các đường trong tam giác cân).
=> BN vuông góc FC. (1)
Vì tam giác FBC cân tại B (cmt). => ^BCF = (180o - ^DBA) : 2.
Vì tam giác ABD cân tại B (cmt). => ^BDA = (180o - ^DBA) : 2.
=> ^BCF = ^BDA.
Mà 2 góc này ở vị trí đồng vị.
=> AD // FC (dhnb).
Mà BE vuông góc với AD tại M (cmt).
=> BE vuông góc FC. (2)
Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm).
Cho tam giác ABC (Góc A=90 độ), phân giác góc B cắt AC tại D.
a) So sánh AB và BD
b) So sánh BC và BD
c) Kẻ DE vuông góc với BC tại E. Gọi F là giao điểm của BA và ED. Chứng minh BDlà đường trung trực AE
d) Chứng minh DF=DC
e) Chứng minh AD<DC
Cho tam giác ABC có AB = 6cm ; AC = 8cm ; BC = 10cm
a) Chứng minh tam giác ABC vuông tại A
b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ D vẽ DE vuông góc với BC (E thuộc BC) Chứng minh DA =DE
c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF>DE
d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC
ta có : BC2 = 102 = 100
AC2 +AB2 =62 + 82 =36 +64 = 100
BC2 =AC2 + AB2
suy ra tam giác ABC vuông tại A ( định lý pytago đảo )