Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Kim Ngân

Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.

1) Chứng minh: ABE = DBE.

2) Chứng minh – BE vuông góc với AD tại M 

3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng. 

Thanh Hoàng Thanh
3 tháng 12 2021 lúc 17:56

1) Xét tam giác ABE và tam giác DBE có:

+ BM chung.

+ AB = DB (gt).

+ ^ABE = ^DBE (do BE là phân giác ^ABD).

=> Tam giác ABE = Tam giác DBE (c - g - c).

2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).

=> Tam giác ABD cân tại B.

Mà BE là phân giác ^ABD (gt).

=> BE là đường cao (Tính chất các đường trong tam giác cân).

Lại có: BE cắt AD tại M (gt).

=> BE vuông góc AD tại M (đpcm).

3) Xét tam giác FBC có: 

+ BN là trung tuyến (do N là trung điểm của CF).

+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).

=> Tam giác FBC cân tại B.

=> BN là đường cao (Tính chất các đường trong tam giác cân).

=> BN vuông góc FC. (1)

Vì tam giác FBC cân tại B (cmt). => ^BCF = (180- ^DBA) : 2.

Vì tam giác ABD cân tại B (cmt). => ^BDA = (180- ^DBA) : 2.

=> ^BCF = ^BDA.

Mà 2 góc này ở vị trí đồng vị.

=> AD // FC (dhnb).

Mà BE vuông góc với AD tại M (cmt).

=> BE vuông góc FC. (2)

Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm). 


Các câu hỏi tương tự
Hà Lê Hồ
Xem chi tiết
tam pham
Xem chi tiết
Lê Phương Mai
Xem chi tiết
03.Trần Minh Anh
Xem chi tiết
Ngọc Ánh Nguyễn
Xem chi tiết
Triss
Xem chi tiết
Tuấn Vũ Trần Lê
Xem chi tiết
Tuấn Vũ Trần Lê
Xem chi tiết
Doraemon N.W
Xem chi tiết