Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Bonn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2019 lúc 14:59

Đặt f(x) = ax2 + bx + c

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

missing you =
Xem chi tiết
trương khoa
17 tháng 5 2021 lúc 12:30

\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)

vì pt có 1 nghiệm duy nhất

nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)\(\dfrac{a}{c}\ne1\)\(a\ne c\)

 

 

 

Lê Thị Thục Hiền
17 tháng 5 2021 lúc 12:47

Mình nghĩ là sai đề
Cho pt \(ax^2+bx+c=0\) (1) và \(cx^2+bx+a=0\)  (2)

Lấy (1) trừ (2) ta được: \(\left(x^2-1\right)\left(a-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(vì a khác c)

TH1: Giả sử nghiệm chung của hai pt là x=1

Thay x=1 vào (1) và (2) được: \(\left\{{}\begin{matrix}a+b+c=0\\a+b+c=0\end{matrix}\right.\)\(\Leftrightarrow b=-a-c\)

Áp dụng hệ thức viet vào hai pt:
\(\left\{{}\begin{matrix}x_1+1=-\dfrac{b}{a}\\x_2+1=-\dfrac{b}{c}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{b}{a}-1\\x_2=-\dfrac{b}{c}-1\end{matrix}\right.\)

Có: \(\left|x_1\right|+\left|x_2\right|>2\Leftrightarrow\left|-\dfrac{b}{a}-1\right|+\left|\dfrac{-b}{c}-1\right|>2\)

\(\Leftrightarrow\left|-\dfrac{-a-c}{a}-1\right|+\left|\dfrac{-\left(-a-c\right)}{c}-1\right|>2\)

\(\Leftrightarrow\left|\dfrac{c}{a}\right|+\left|\dfrac{a}{c}\right|>2\) \(\Leftrightarrow c^2+a^2>2\left|ac\right|\) (luôn đúng với mọi \(a\ne c\))
TH2: Giả sử x=-1 là nghiệm chung của hai pt

Thay x=-1 vào hai pt được: \(\left\{{}\begin{matrix}a-b+c=0\\c-b+a=0\end{matrix}\right.\) \(\Leftrightarrow b=a+c\)

Áp dụng viet vào hai pt có: \(\left\{{}\begin{matrix}x_1+\left(-1\right)=-\dfrac{b}{a}\\x_2+\left(-1\right)=-\dfrac{b}{c}\end{matrix}\right.\)

Khi đó: \(\left|x_1\right|+\left|x_2\right|=\left|-\dfrac{b}{a}+1\right|+\left|-\dfrac{b}{c}+1\right|\)

\(=\left|-\dfrac{a+c}{a}+1\right|+\left|-\dfrac{a+c}{c}+1\right|\)\(=\left|-\dfrac{c}{a}\right|+\left|-\dfrac{a}{c}\right|\)\(=\left|\dfrac{c}{a}\right|+\left|\dfrac{a}{c}\right|=\dfrac{c^2+a^2}{\left|ac\right|}>\dfrac{2\left|ac\right|}{\left|ac\right|}=2\)
Vậy...
 

 

Lê Hà
Xem chi tiết
Lê Hà
Xem chi tiết
Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Như Nguyễn
Xem chi tiết
♥➴Hận đời FA➴♥
12 tháng 2 2019 lúc 19:58

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

Quang Anh Dam
Xem chi tiết
Đỗ Ngọc Hoàng Hải
17 tháng 6 2016 lúc 15:10
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
Hồng Phượng Thái Thị
Xem chi tiết
Ami Mizuno
9 tháng 2 2022 lúc 14:53

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

Nguyễn Huy Tú
9 tháng 2 2022 lúc 14:55

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)