Tìm GTNN của biểu thức :
M = x^2 + y^2 + x + 4y
Cho hai số x, y thỏa mãn: x-4y=5. Tìm GTNN của biểu thức: \(A=x^2+4y^2\)
\(x-4y=5\Rightarrow x=4y+5\)
\(A=\left(4y+5\right)^2+4y^2=20y^2+40y+25\)
\(A=20\left(y+1\right)^2+5\ge5\)
\(A_{min}=5\) khi \(\left(x;y\right)=\left(1;-1\right)\)
Cho biểu thức M=x^2-5x+y^2+xy-4y+2012 với giá trị nào của x,y thì M đạt GTNN. Tìm GT đó
M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)
M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)
M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)
GTNN=(.....)
tai: y=5
2x+5-5=0=> x=0
tìm GTNN của biểu thức M = x2 + y2 - xy +2x -4y - 2018
4M = 4x^2+4y^2-4xy+8x-16y-8072
= [(4x^2-4xy+y^2)-2.(2x+y).2+4]+(3y^2-12y+12)-8088
= [(2x-y)^2-2.(2x-y).2+4]+3.(y^2-4y+4)-8088
= (2x-y-2)^2+3.(y-2)^2-8088 >= -8088
=> M >= -2022
Dấu "=" xảy ra <=> 2x-y-2=0 và y-2=0 <=> x=y=2
Vậy GTNN của M = -2022 <=> x=y=2
Tk mk nha
1,Tìm số nguyên m để C=căn(m^2+m+1) là số nguyên
2,cho hai số x,y thỏa mãn phương trình : 3x^2+4y^2-4xy-6x+4y=5.Tìm GTLN,GTNN của biểu thức M=2x+2015
Tìm mối liên hệ của x, y để biểu thức sau đạt GTNN. Tìm GTNN đó
P = x2 + 2xy + 4x + 4y + y2 + 5
\(P=x^2+2xy+4x+4y+y^2+5\)
\(=\left(x^2+2xy+y^2\right)+4\left(x+y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+4+1\)
\(=\left(x+y+2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y+2=0\)
Vậy với x + y + 2 = 0 thì Pmin = 1
p = x.x + 2.x.y+ 4.x+4.y+ y.2+5
=> P= x.(x+2+y+4)+y.(4+2) +5
mà giá trị nhỏ nhất là gì ạ?
\(P=\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+5\)\(\ge0+0+5=5\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=\left(-x\right)\end{cases}}\)
Tìm GTNN của biểu thức: P =x^2 + 4y^2 - 4x + 4y + 2021
\(P=x^2+4y^2-4x+4y+2021\)
\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+2016\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+2016\ge2016\)
\(P_{min}=2016\Leftrightarrow x=2;y=-\dfrac{1}{2}\)
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
x4 - 4y(x2-4y) + x2 -6x +10
Tìm GTNN của biểu thức :
D = \(x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\) (x ≥ 1/2, y ≥ 3/4)
Helppp!!! :(
Tìm GTNN của biểu thức
\(C=x^2-2x+y^2-4y+7\)
\(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của \(C\) là \(2\) khi \(x=1\) và \(y=2\)
Chúc bạn học tốt ~