Cho x+y+xy=8. TÌm GTNN của P=x2+y2.
cho x + y + xy = 8. Tìm GTNN của P = x2 + y2
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
Cho (x+y-1)2 = xy tìm GTNN của P=1/xy + 1/x2+y2 + √xy/x+y
cho x,y>0 và x+y=1. Tìm GTNN của 1/xy +2/(x2+y2)
áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)
=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)
dấu bằng xảy ra khi x=y=1/2
Cho x y là số thực thỏa mãn x - y - xy=3 Tìm GTNN của A= x2 +y2
cho x+y+z=4 xy+xz+xt+yz+yt+zt=1 tìm GTNN của x2+y2+z2+t2
Cho x + y + z = 3
a, Tìm GTNN của A = x2 + y2 + z2
b, Tìm GTNN của B = xy + yz + zx
c, Tìm GTNN của C = A + B
a, ap dung bunhiacopxki
(1+1+1)A\(\ge\)(x+y+z)2=9
A\(\ge\)3
Dau bang xay ra khi x=y=z=1
b, co Bmax ko co Bmin
Cho x,y >0 và X2 +y2 =8 . Tìm GTLN của xy/xy+1 .
Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)
Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)
\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)
Dấu "=" xảy ra khi $x=y=2$
Cho các số thực x;y thỏa mãn: xy+x+y=15
Tìm GTNN của A=x2+y2
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$
$\Rightarrow 3(x^2+y^2)\geq 6xy$
$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$
$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$
Cộng theo vế các BĐT trên:
$4(x^2+y^2)+18\geq 6(xy+x+y)=90$
$\Rightarrow x^2+y^2=18$
Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$
cái này x,y phải là số thực dương chứ nhỉ
\(xy+x+y=15< =>x\left(y+1\right)+\left(y+1\right)=16\)
\(< =>\left(x+1\right)\left(y+1\right)=16\)
đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\)\(=>a.b=16\)
Ta có:
\(a^2-2ab+b^2\ge0\)
=> \(a^2+b^2+2ab-4ab\ge0\)\(=>\left(a+b\right)^2\ge4ab\)\(< =>\left(x+y+2\right)^2\ge4.16=64\)
\(=>x+y+2\ge\sqrt{64}=>x+y\ge\sqrt{64}-2=6\)
\(=>\left(x+y\right)^2=6^2=36\)
lại có \(\left(x-y\right)^2\ge0=>\left(x+y\right)^2+\left(x-y\right)^2\ge36\)
\(< =>x^2+2xy+y^2+x^2-2xy+y^2\ge36\)
\(< =>2\left(x^2+y^2\right)\ge36=>x^2+y^2\ge18\)
dấu"=" xảy ra<=>x=y=3=>Min A=18
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
cho x;y thỏa mãn x2+8/x2+y2/8=8 tìm max và min củaB=xy+2024
đúng thì like giúp mik nha bạn. Thx bạn