\(^{^{3^{x+1}+2x.3^x-18x-27=0}}\)
tim x
1) tim x: a) x(x+1) +3(x+1)=0 b) 3x(12x-4) -2x(18x+3) = 36
a) x(x+1)+3(x+1)=0
⇌ (x+1)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
b)3x(12x-4)-2x(18x+3)=0
⇒36x2-12x-36x2+6x=0
⇒ -6x = 0
⇒ x=0
\(3^{x+1}+2x\cdot3^x-18x-27=0\)timf x
<=> 3x(2x+3)-9(2x+3)=0
<=> (2x+3)(3x-9)=0
<=> 2x+3=0 => x=-3/2
Và: 3x-9=0 => 3x=9=32 => x=2
Đs: x=-3/2 và x=2
tìm x biết: \(3^{|x-1|+1}-18x+2x\times3^{|x-1|}-27=0\)
giải phương trình :
\(3^{x+1}+2x.3^x-18x-27=0\)
\(3^{x+1}+2x.3^x-18x-27=0\)
\(\Leftrightarrow3^x\left(2x+3\right)-9\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3^x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3^x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=2\end{matrix}\right.\)
Vậy ...............
3x.3+2x.3x-(18x+27)=0
=> 3x(3+2x)-9.(3+2x)=0
=> (3x-9).(3+2x)=0
=> \(\left[{}\begin{matrix}3^x-9=0\\3+2x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3^x=9=3^2\\2x=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Tìm x biết:
\(3^{x+1}+2x.3^x-18x+27=0\)
3x+1+2X.3x-18x+27=0
<=> 3x(3+2x)-9(3+2x)=0
<=> (3+2x)(3x-9)=0
\(\Leftrightarrow\orbr{\begin{cases}3+2x=0\\3^x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1,5\\x=2\end{cases}}\)
\(3^{x+1}+2x.3^x-18x-27=0\)
đố làm dc cho 3 tick
\(3^{x+1}+2x+3^x-18x-27=0\)
<=> \(3^x\left(3+2x\right)-9\left(2x+3\right)=0\)
<=> \(\left(2x+3\right)\left(3^x-9\right)=0\)
<=>\(\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)
vậy.......
3x + 1 + 2x .3x - 18x - 27 = 0
<=> 3x ( 3 + 2x ) - 9 ( 2x + 3 ) = 0
<=> ( 3x - 9 ) ( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}3^x-9=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}3^x=9\\2x=-3\end{cases}}\)
<=>\(\orbr{\begin{cases}3^x=3^2\\x=-\frac{3}{2}\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
Tìm x : 3\(^{\left|x-1\right|+1}\) -18x+2x\(\times3^{\left|x-1\right|}\)− 27 = 0
a, 2x²-18x+28=0. b, x-2/x²-9+3x-1/x+3=2x+1/x-3+1
\(a,2x^2-18x+28=0\)
\(\Leftrightarrow2\left(x^2-9x+14\right)=0\)
\(\Leftrightarrow x^2-9x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
\(b,\dfrac{x-2}{x^2-9}+\dfrac{3x-1}{x+3}=\dfrac{2x+1}{x-3}+1\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(3x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-1=0\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-3\right)\left(x+3\right)}+\dfrac{3x^2-10x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{2x^2+7x+3}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\)\(\Rightarrow x-2+3x^2-10x+3-2x^2-7x-3-x^2+9=0\)
\(\Leftrightarrow-16x+7=0\)
\(\Leftrightarrow-16x=-7\)
\(\Leftrightarrow x=\dfrac{7}{16}\left(tm\right)\)
\(VậyS=\left\{\dfrac{7}{16}\right\}\)
a: =>x^2-9x+14=0
=>(x-2)(x-7)=0
=>x=2 hoặc x=7
b: =>x-2+(3x-1)(x-3)=(2x+1)(x+3)+x^2-9
=>x-2+3x^2-9x-x+3=2x^2+7x+3+x^2-9
=>3x^2-9x+1=3x^2+7x-6
=>-16x=-7
=>x=7/16
Tìm x :
a) \(3^{x+1}+2x.3^x-18x-27=0\)
b) \(\dfrac{1}{2}\left|2x+5\right|-\dfrac{5}{4}\left|4x+10\right|+\dfrac{7}{3}\left|-20-8x\right|=\dfrac{1}{6}\)
a: \(\Leftrightarrow3^x\cdot3+2x\cdot3^x-18x-27=0\)
\(\Leftrightarrow3^x\left(2x+3\right)-9\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3^x-9\right)=0\)
=>x=2 hoặc x=-3/2
b: \(\Leftrightarrow\left|2x+5\right|\cdot\dfrac{1}{2}-\dfrac{5}{4}\cdot2\cdot\left|2x+5\right|+\dfrac{7}{3}\cdot4\cdot\left|2x+5\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left|2x+5\right|=\dfrac{1}{44}\)
=>2x+5=1/44 hoặc 2x+1=-1/44
=>x=-219/88 hoặc x=-221/88