Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thảo annh
Xem chi tiết
My Võ
Xem chi tiết
Ngoclinhk6
Xem chi tiết
Khang Diệp Lục
23 tháng 2 2021 lúc 16:38

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=2\\x+2y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=2\\3x=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Khang Diệp Lục
23 tháng 2 2021 lúc 16:54

b) \(\left\{{}\begin{matrix}mx+y=1\\x+my=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=1-mx\\x+m\left(1-mx\right)=1\left(1\right)\end{matrix}\right.\)

(1) ⇔x+m-m2x=1

⇔x(1-m2)=1-m (2)

TH1: 1-m2 = 0

⇔m = +- 1

Thay m=1 vào (2) ta có: 0x=0 (Luôn đúng) ⇒m=1 (chọn)

Thay m=-1 vào (2) ta có: 0x=2 (Vô lí) ⇒m=-1 (loại)

TH2: 1-m2 ≠0

⇔m≠ +-1

⇒HPT có nghiệm duy nhất:

x=  \(\dfrac{1-m}{1-m^2}\)

⇒y= \(1-m.\dfrac{1-m}{1-m^2}\)

⇔y=\(\dfrac{1-m}{1-m^2}\)

Dễ thấy x=y nên: 

\(\dfrac{1-m}{1-m^2}>0\)

⇔1-m>0

⇔m<1

Vậy m <1 thì Thỏa mãn yêu cầu đề bài.

 

 

 

Nguyễn Lê Phước Thịnh
23 tháng 2 2021 lúc 22:49

a) Thay m=2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=1\\2x+4y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=1-y=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Trí Giải
Xem chi tiết
Minh Anh
Xem chi tiết
Tô Mì
6 tháng 4 2023 lúc 21:57

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

Tô Mì
6 tháng 4 2023 lúc 22:16

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

Vũ Thu Hiền
Xem chi tiết
Gấu Băng
Xem chi tiết
Vũ Hoàng Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 14:58

\(A=\dfrac{2x-4\sqrt{x}+2-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

\(=\dfrac{2x-4\sqrt{x}+2-2x+4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}+2}\cdot\dfrac{1}{\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

Thư Ng
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 17:42

1b) \(C=\sqrt{81a}-\sqrt{144a}+\sqrt{36a}\left(a\ge0\right)=8\sqrt{a}-12\sqrt{a}+6\sqrt{a}=2\sqrt{a}\)

Bài 2:

a),b) \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}}+1\right)\left(đk:x>0,x\ne1\right)\)

\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{2\sqrt{a}}{1-\sqrt{a}}.\dfrac{1}{\sqrt{a}}=\dfrac{2}{1-\sqrt{a}}\)

c) \(P=\dfrac{2}{1-\sqrt{a}}=\dfrac{2}{1-\sqrt{4}}=\dfrac{2}{1-2}=-2\)

d) \(P=\dfrac{2}{1-\sqrt{a}}=9\)

\(\Rightarrow-9\sqrt{a}+9=2\Rightarrow\sqrt{a}=\dfrac{7}{9}\Rightarrow a=\dfrac{49}{81}\left(tm\right)\)