\(\sqrt{25}\)=
a) \(\dfrac{2}{5}\sqrt{25}\) -\(\dfrac{1}{2}\sqrt{4}\) b)0,5\(\sqrt{0,09}\) +5\(\sqrt{0,81}\) c)\(\dfrac{2}{5}\sqrt{\dfrac{25}{36}}\) -\(\dfrac{5}{2}\sqrt{\dfrac{4}{25}}\)
d)-2\(\sqrt{\dfrac{-36}{-16}}\) + 5\(\sqrt{\dfrac{-81}{-25}}\)
`#3107.101107`
a)
`2/5 \sqrt{25} - 1/2 \sqrt{4}`
`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`
`= 2/5*5 - 1/2*2`
`= 2 - 1`
`= 1`
b)
`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`
`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`
`= 0,5*0,3 + 5*0,9`
`= 0,15 + 4,5`
`= 4,65`
c)
`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`
`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`
`= 2/5*5/6 - 5/2*2/5`
`= 1/3 - 1`
`= -2/3`
d)
`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`
`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`
`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`
`= -2*6/4 + 5*9/5`
`= -3 + 9`
`= 6`
Cộng các căn sau;
\(\sqrt{12}+\sqrt{120}\)
\(\sqrt{2010}+\sqrt{2022}\)
\(\sqrt{25+68}+\sqrt{25+85}\)
\(\sqrt{25+26}+\sqrt{25}\)
\(\sqrt{25+66+89}\)
\(\sqrt{25+69+55}+\sqrt{58}+\sqrt{59}\)
\(\sqrt{258+66}\)
\(\sqrt{2015+2013}\)
\(\sqrt{12}+\sqrt{120}=14,41855277\)
\(\sqrt{2010}+\sqrt{2022}=89,79967785\)
\(\sqrt{25+68}+\sqrt{25+85}=163\)
\(\sqrt{25+26}+\sqrt{25}=35\)
\(\sqrt{25+66+89}=160\)
\(\sqrt{25+69+55}+\sqrt{58}+\sqrt{59}=144,2969189\)
\(\sqrt{2015+2013}=2,057888751\)
\(\sqrt{12}+\sqrt{120}=2\sqrt{30}+2\sqrt{3}=14,41855277\)
\(\sqrt{2010}+\sqrt{2022}=89,79967785\)
\(\sqrt{25+68}+\sqrt{25+85}=\sqrt{110}+\sqrt{93}=20,13173924\)
\(\sqrt{25+26}+\sqrt{25}=5+\sqrt{51}=12,14142843\)
\(\sqrt{25+66+89}=6\sqrt{5}=13,41640785\)
\(\sqrt{25+69+55}+\sqrt{58}+\sqrt{59}=27,50347447\)
\(\sqrt{258+66}=18\)
\(\sqrt{2015+2013}=63,46652661\)
So sánh: \(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\)và \(\sqrt{25}-\sqrt{16}\)
So sánh:
\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
Ta có:
\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)
\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)
Tương tự:)
Chứng minh rằng:
\(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)
Tính:
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\\ =\dfrac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\dfrac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+....+\dfrac{1}{\sqrt{24.25}\left(\sqrt{25}+\sqrt{24}\right)}\\ =\dfrac{\sqrt{2}-1}{\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{2}.\sqrt{3}}+...+\dfrac{\sqrt{25}-\sqrt{24}}{\sqrt{25}.\sqrt{24}}\\ =1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\\ =1-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\)
=1-1/5=4/5
Với `n` làm cho biểu thức dưới đây có nghĩa, ta có:
`1/((n+1)sqrtn+nsqrt(n+1))=1/(sqrtn sqrt(n+1)(sqrt(n+1)+sqrt(n)))=(sqrt(n+1)-sqrt(n))/(sqrtn sqrt(n+1))=1/(sqrtn)-1/(sqrtn+1)`
Khi đó:
`M=\sum_{n=1}^(24)=1/((n+1)sqrtn+nsqrt(n+1))=1/(sqrtn)-1/(sqrtn+1)=1/(sqrt1)-1/(sqrt25)=1-1/5=4/5`
giúp mình với
bài 5: a) so sánh \(\sqrt{25}+\sqrt{9}\) và \(\sqrt{25+9}\)
b)CMR: a>0,b>0 thì \(\sqrt{a+b}\)<\(\sqrt{a}+\sqrt{b}\)
a)\(\sqrt{25}+\sqrt{9}=5+3=8\)
\(\sqrt{25+9}=\sqrt{36}=6\)
Do \( 8>6\)
\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)
Ta có:
\((\sqrt{a+b})^{2}=a+b(1)\)
\((\sqrt{a}+\sqrt{b})^{2}=a+2\sqrt{ab}+b(2)\)
\(Theo giả thiết a,b>0 nên 2\sqrt{ab}>0,do đó từ(1) và(2) suy ra: (1)<(2),suy ra ĐPCM\)
So sánh
1, \(\sqrt{25+9}\) và \(\sqrt{25}+\sqrt{9}\) . Với a> 0 , b > 0 chứng minh \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
2. \(\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\) . Với a>b>0 chứng minh \(\sqrt{a-b}>\sqrt{a}-\sqrt{b}\)
Cho 25 số tự nhiên \(a_1,a_2,a_3,...,a_{25}\) thỏa điều kiện \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{25}}}=9\). Chứng minh rằng trong 25 số tự nhiên đó tồn tại 2 số bằng nhau.
Ta phản chứng rằng không tồn tại 2 số nào bằng nhau trong 25 số trên, đồng nghĩa với 25 số trên là phân biệt, ta sắp xếp chúng theo thứ tự $a_1<a_2<...<a_25$, có thể thấy rằng, bộ số $1,2,...25$ chính là bộ số mà giá trị của vế trái lớn nhất, nhưng giá trị lúc này có thể tính được là xấp xỉ 8,6<9 nên không thỏa mãn, các bộ số khác hiển nhiên cũng sẽ khiến vế trái nhỏ hơn 9, vậy không tồn tại bộ số nào thỏa mãn nếu chúng phân biệt, ta có điều phải chứng minh
\(\sqrt{25\left(x-3\right)}\) - 10\(\sqrt{\dfrac{x-3}{25}}\)- 1= 3 + \(\sqrt{x-3}\)
\(\sqrt{25\left(x-3\right)}-10\sqrt{\dfrac{x-3}{25}}-1=3+\sqrt{x-3}\left(đk:x\ge3\right)\)
\(\Leftrightarrow5\sqrt{x-3}-10.\dfrac{1}{5}\sqrt{x-3}-1=3+\sqrt{x-3}\)
\(\Leftrightarrow2\sqrt{x-3}=4\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\Leftrightarrow x=7\)
Ta có: \(\sqrt{25\left(x-3\right)}-10\sqrt{\dfrac{x-3}{25}}-1=3+\sqrt{x-3}\)
\(\Leftrightarrow5\sqrt{x-3}-2\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow2\sqrt{x-3}=4\)
\(\Leftrightarrow x-3=4\)
hay x=7
Chứng minh rằng:
a)\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
b) \(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)