tim x, y
A=(6*x^3*y)*(-2/3*y*x6^2)^2
cho xin hỏi kết quả của bài này là gì 1:tim x/y
a)2/3 x x/y = 8/15 b)x/y : 3/4 =2/5 c)3/5 : x/y =4/7
1:tim x/y
a)2/3 x x/y = 8/15 b)x/y : 3/4 =2/5 c)3/5 : x/y =4/7
2:hình chữ nhật có diện tích 3/5 m2 và chiều rộng 3/4 m.Hãy tính chu vi hình đó
cho mình xin kết quả nhé
Bài 1:
a.
$\frac{2}{3}\times \frac{x}{y}=\frac{8}{15}$
$\frac{x}{y}=\frac{8}{15}: \frac{2}{3}=\frac{4}{5}$
b.
$\frac{x}{y}: \frac{3}{4}=\frac{2}{5}$
$\frac{x}{y}=\frac{3}{4}\times \frac{2}{5}=\frac{3}{10}$
c.
$\frac{3}{5}: \frac{x}{y}=\frac{4}{7}$
$\frac{x}{y}=\frac{3}{5}: \frac{4}{7}=\frac{21}{20}$
Bài 2:
Chiều dài hình chữ nhật là:
$\frac{3}{5}: \frac{3}{4}=\frac{4}{5}$ (m)
Chu vi hình chữ nhật:
$2\times (\frac{3}{4}+\frac{4}{5})=\frac{31}{10}$ (m)
tìm x,y
A) \(x^3+y^3=6xy-8\)
B)\(x^3-y^3=xy+8\)
C)\(x^2+xy+y^2=x^2y^2\)
Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.
tìm số nguyên x,y
a\(y^2\)=3-|2x-3|
b2.\(y^2\)=3-|x+4|
c25-\(y^2\)=8.\(\left(x-2021\right)^2\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left|2x-3\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow3-\left|2x-3\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (t/m)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}3-\left|2x-3\right|=1\\3-\left|2x-3\right|=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\\x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\) (loại vì \(x;y\in Z\) )
b) \(2.y^2=3-\left|x+4\right|\)
Vì \(-\left|x+4\right|\le0\forall x\) nên \(3-\left|x+4\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow3-\left|x+4\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (t/m)
TH2:
\(y^2=1\)
\(\Rightarrow3-\left|x+4\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\) (t/m)
c) \(25-y^2=8.\left(x-2021\right)^2\)
Vì \(\left(x-2021\right)^2\le0\forall x\) nên \(8.\left(x-2021\right)^2\le0\forall x\) nên \(y^2\in\left\{0\right\}\) (vì \(y\in Z\) )
\(y^2=0\)
\(\Rightarrow8.\left(x-2021\right)^2=25\)
Vì \(\dfrac{25}{8}\) ko có p/s mũ 2 nên \(x\in\) ∅
Chúc bạn học tốt!
Vì -/2x-3/< 0 với mọi x nên 3-/2x-3/< 3 với mọi x -> y2< 3 -> y2 thuộc {0;1} ( vì y thuộc z)
Th1: y2=0-> y=0-> /2x-3/=3-> 2x-3=3 hoặc 2x-3=-3<-> x=0 hoặc x=3
Th2: y2=1-> y=+ 1-> /2x-3/=2-> 2x-3=2 hoặc 2x-3=-2 (loại vì x nguyên)
Câc câu còn lại bạn làm tương tự nhé
Chúc bạn học tốt!
tim x,y biết
3*x^2*y+6*x^2*y^2+2*y=8
cho x,y ti le thuan tim x biet x2=3,y1=-2,y2=\(\dfrac{3}{8}\) tim x2,y2biet y2-x2=-5,x1=-6,y1=4
Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)
=>\(x_1=-16\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)
\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)
Do đó: \(x_2=3;y_2=-2\)
tim x y de (-x+3)x(3-y)=6 (/x/+1)x(y-7)=2
tim x,y thuoc z biet
-24/-6 = x/3 = 4/y^2 = z^3/-2
tim cac so nguyen x,y
a) x^2 - xy + x - y = 6
b) (x+ 2)^2 + 2(y - 3)^2 <4
\(x^2-xy+x-y=\) \(6\)
\(x\left(x-y\right)+\left(x-y\right)\)\(=6\)
\(\left(x+1\right)\left(x-y\right)\) \(=6\)
vì \(x,y\) thuộc Z
=> \(x+1,x-y\)thuộc ước của \(6\)
làm nốt nha