Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Kim Oanh
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 10 2021 lúc 11:14

Áp dụng BĐT cosi dạng \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\cdot\dfrac{1}{4}\ge\dfrac{4}{a+b}\cdot\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Leftrightarrow\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+a+c}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{a+2b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow a=b=c\)

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Trần Tuấn Hoàng
13 tháng 2 2022 lúc 19:33

-Để mình suy nghĩ ngồi làm cho bạn nhé.

Trần Tuấn Hoàng
13 tháng 2 2022 lúc 19:47

-Vì bài dài quá nên mình nói tóm tắt:

a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).

-Suy ra: \(BM=CN\) .

-Suy ra 2 điều:

+\(QM^2-BQ^2=MN^2-MC^2\)

+\(QM+BQ=MN+MC\) (1)

\(QM^2-BQ^2=MN^2-MC^2\)

\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)

\(\Rightarrow QM-BQ=MN-MC\) (2)

-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).

\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).

\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)

Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ

-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN

.......

 

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
20 tháng 9 2021 lúc 10:47

Hình vẽ minh họa cho  bài toánundefined

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 1:28

Đặt \(a=p^q+7q^p\)

Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)

Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ

\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ

TH1: \(p=2\Rightarrow a=2^q+7.q^2\)

- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)

- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)

\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)

TH2: \(q=2\Rightarrow a=p^2+7.2^p\)

- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)

- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu

Phạm Kim Oanh
Xem chi tiết