Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyen Nguyen
Xem chi tiết
Arceus Official
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 15:56

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

tiểu an Phạm
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Ngu Ngu Ngu
20 tháng 4 2017 lúc 10:52

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

LIVERPOOL
Xem chi tiết
alibaba nguyễn
1 tháng 7 2017 lúc 17:48

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

tranhuyhoang
5 tháng 7 2017 lúc 18:01

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

bach nguyen dinh an
Xem chi tiết
bach nguyen dinh an
Xem chi tiết
Trịnh Quang Hùng
Xem chi tiết
Hồ Thị Minh Châu
Xem chi tiết
bach nhac lam
30 tháng 6 2019 lúc 21:45

+ \(\sqrt{2013}-\sqrt{2011}=\frac{\left(\sqrt{2013}-\sqrt{2011}\right)\left(\sqrt{2013}+\sqrt{2011}\right)}{\sqrt{2013}+\sqrt{2011}}\)

\(=\frac{2}{\sqrt{2013}+\sqrt{2011}}\)

+ \(\sqrt{2012}-\sqrt{2010}=\frac{\left(\sqrt{2012}-\sqrt{2010}\right)\left(\sqrt{2012}+\sqrt{2010}\right)}{\sqrt{2012}+\sqrt{2010}}\)

\(=\frac{2}{\sqrt{2012}+\sqrt{2010}}\)

+ \(\sqrt{2013}+\sqrt{2011}>\sqrt{2012}+\sqrt{2010}\)

\(\Rightarrow\frac{2}{\sqrt{2013}+\sqrt{2011}}< \frac{2}{\sqrt{2012}+\sqrt{2010}}\)

\(\Rightarrow\sqrt{2013}-\sqrt{2011}< \sqrt{2012}-\sqrt{2010}\)