+ \(\sqrt{2013}-\sqrt{2011}=\frac{\left(\sqrt{2013}-\sqrt{2011}\right)\left(\sqrt{2013}+\sqrt{2011}\right)}{\sqrt{2013}+\sqrt{2011}}\)
\(=\frac{2}{\sqrt{2013}+\sqrt{2011}}\)
+ \(\sqrt{2012}-\sqrt{2010}=\frac{\left(\sqrt{2012}-\sqrt{2010}\right)\left(\sqrt{2012}+\sqrt{2010}\right)}{\sqrt{2012}+\sqrt{2010}}\)
\(=\frac{2}{\sqrt{2012}+\sqrt{2010}}\)
+ \(\sqrt{2013}+\sqrt{2011}>\sqrt{2012}+\sqrt{2010}\)
\(\Rightarrow\frac{2}{\sqrt{2013}+\sqrt{2011}}< \frac{2}{\sqrt{2012}+\sqrt{2010}}\)
\(\Rightarrow\sqrt{2013}-\sqrt{2011}< \sqrt{2012}-\sqrt{2010}\)