Cho tam giác ABC vuông tại A , trung tuyến AM . Chứng minh AM 1/2 BC
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
cho tam giác abc vuông tại a trung tuyến am chứng minh am =1/2 bc
(Bạn tự vẽ hình)
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền
=> đpcm
Bài 1. Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC tại M
a) Chứng minh AM là trung tuyến của tam giác
b) Biết AB = 15 cm; BC = 12 cm. Tính độ dài đường trung tuyến AM.
1) tam giác ABC có các đường trung tuyến BD và CE bằng nhau . chứng minh rằng tam giác ABC là tam giác cân.
2)cho tam giác ABC cân ở A , AB=34cm , BC =32cm , và 3 trung tuyến AM , BN , CP đồng quy tại trọng tâm G
a) chúng minh AM vuông góc với
b) tính độ dài AM , BN ,CP (làm trong kết quả đến chữ số thập phân thứ 2)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Co tam giác ABC vuông tại A Lấy đường trung tuyến Am .Trên tia đối của tia MA lấy điểm D sao cho MD=MA a) tính góc ABD b) chứng minh tam giác ABC = tam giacs BAD c) chứng minh AM =1/2 BC
cho tam giác ABC vuông tại A có trung tuyến AM . Kéo dài ÂM lấy MĐ = MÀ . chứng minh:
1) CD // AB
2) Tam giác ABC = Tam giác CAD
3) AM = BC/2
a) Xét ΔABM và ΔDCM có:
BM=MC(gt)
\(\widehat{BMA}=\widehat{CMD}\)(đđ)
AM=DM
=> ΔABM=ΔDCM(c.g.c)
=>\(\widehat{ABM}=\widehat{MCD}\) .Mà 2 góc này ở vị trí soletrong)
=>AB//CD
b)Vì ΔABC vuông tại A(gt)
=> AM=BM=MC
Có: AD=AM+MD
BC=MB+MC
Mà: AM=BM(cmt); MD=MC(cmt)
=>BC=AM
Vì ΔABM=ΔDCM(cmt)
=>AB=DC
Xét ΔABC và ΔCDA có:
AB=DC(cmt)
AC: cạnh chung
BC=AD(cmt)
=>ΔABC=ΔCDM(c.c.c)
c) Vì ΔABC vuông tại A(gt)
=>AM=BC/2
1) Xét tam giác ABM và tam giác DCM có:
BM=MC (vì M là trung điểm của BC)
góc BMA=góc CMD (hai góc đối đỉnh)
MA=MD (gt)
=> tam giác ABM=tam giác DCM (c.g.c)
=> góc ABM=góc DCM
Mà góc ABM và góc DCM là 2 góc so le trong nên AB//CD
2) Vì CD//AB mà AB vuông góc với AC nên CD vuông góc góc AC
=> góc ACD=90 độ
Theo câu 1): tam giác ABM=tam giác CDM
=> AB=CD
Xét tam giác ABC và tam giác CDA có:
AB=CD (cmt)
góc BAC=góc DCA=90 độ
AC:chung
=> tam giác ABC=tam giác CDA (c.g.c)
3) Theo 2) tam giác ABC=tam giác CDA
=> BC=DA
Mà AM=\(\frac{1}{2}\)AD nên AM=\(\frac{1}{2}BC\)
Cho tam giác ABC cân tại A, trung tuyến AM. Chứng minh rằng:
a) AM là phân giác của góc BAC?
b)AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông gócBC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông gócBC
Cho tam giác ABC vuông tại A,có AM là trrung tuyến,Chứng minh AM=1/2 BC
Trên tia đối của tia MA lấy D s/c MA=MD từ đó chứng minh được:
\(\text{△AMB=△DMC(c.g.c)}\) \(\text{⇒}\) \(\widehat{ABM}=\widehat{DCM}\) \(mà\) \(\widehat{ABM}+\widehat{ACM}=90^O\text{ }\text{⇒}\widehat{ACD}=90^O\)
⇒ \(\text{△}ABC=\text{△}CDA\left(c.g.c\right)\) ⇒ BC=AD ⇒ \(\dfrac{1}{2}BC=\dfrac{1}{2}AD\text{⇒ }\dfrac{1}{2}BC=AM\)
vì AM là trung tuyến TG ABC => M là trung điểm BC
1) Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a)Tính số đo góc ABD?
b)Chứng minh : Tam giác ABC = Tam giác BAD.
c) So sánh AM và BC.
2) Cho tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. CMR: góc BAC = 90 độ.