Trên tia đối của tia MA lấy D s/c MA=MD từ đó chứng minh được:
\(\text{△AMB=△DMC(c.g.c)}\) \(\text{⇒}\) \(\widehat{ABM}=\widehat{DCM}\) \(mà\) \(\widehat{ABM}+\widehat{ACM}=90^O\text{ }\text{⇒}\widehat{ACD}=90^O\)
⇒ \(\text{△}ABC=\text{△}CDA\left(c.g.c\right)\) ⇒ BC=AD ⇒ \(\dfrac{1}{2}BC=\dfrac{1}{2}AD\text{⇒ }\dfrac{1}{2}BC=AM\)
vì AM là trung tuyến TG ABC => M là trung điểm BC