tìm nghiệm nguyên dương của phương trình
xy/z + yz/x + zx/y = 3
Tìm nghiệm nguyên dương của phương trình \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
Áp dụng bất đẳng thứ Cauchy (AM-GM):
\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)
Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)
Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\) (1)
Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\) (2)
Và: \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\) (3)
Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)
\(PT\Leftrightarrow xy^2+yz^2+xz^2=3xyz\ge3\sqrt[3]{xyz^4}\)
Từ đó suy ra: xyz = 1 từ đó suy ra (x,y,z) = (1,1,1);(1,−1,−1);(−1,−1,1);(−1,1,−1)
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời
Tìm nghiệm nguyên ,dương của phương trình: xy+yz+zx=xyz+2
giúp mình zới
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(\Rightarrow xy+yz+zx\le3xy\)
\(\Rightarrow xyz+2\le3xy\)
\(\Rightarrow xy\left(3-z\right)\ge2>0\)
\(\Rightarrow3-z>0\Rightarrow z< 3\)
\(\Rightarrow z=\left\{1;2\right\}\)
TH1:
\(z=1\Rightarrow xy+x+y=xy+2\)
\(\Leftrightarrow x+y=2\Rightarrow x=y=1\)
\(\Rightarrow\left(x;y;z\right)=\left(1;1;1\right)\)
TH2: \(z=2\Rightarrow xy+2x+2y=2xy+2\)
\(\Rightarrow xy-2x-2y+2=0\)
\(\Rightarrow xy-2x-2y+4=2\)
\(\Rightarrow x\left(y-2\right)-2\left(y-2\right)=2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)=2\) (pt ước số cơ bản)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(4;3;1\right)\)
Vậy nghiệm của pt đã cho là:
\(\left(x;y;z\right)=\left(1;1;1\right);\left(4;3;1\right)\) và các hoán vị của chúng
tìm nghiệm nguyên dương của phương trình y+z+zx-xyz=2
https://olm.vn/thanhvien/900487
bạn ơi Bui Huyen học ở trương tiểu học Thọ Lộc
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
cho ác số dương x ,y ,z thả mãn x+y+z=3.Tìm GTLN của
B=\(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{yz}{yz+3x}}\)+\(\sqrt{\dfrac{zx}{zx+3y}}\)
Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3 ta có:
\(B=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\dfrac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\dfrac{zx}{zx+y\left(x+y+z\right)}}\)
\(B=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\dfrac{yz}{\left(y+x\right)\left(z+x\right)}}+\sqrt{\dfrac{zx}{\left(z+y\right)\left(z+x\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}+\dfrac{x}{z+x}\right)\)
\(B\le\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Vậy...
Tìm các số nguyên dương x;y;z thỏa mãn: xy(x+y)=6;yz(y+z)=12;zx(z+x)=30
tìm ba số nguyên dương x,y,z thỏa mãn x+y+z+xy+yz+zx chia hết cho xyz
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm nghiệm nguyên dương
\(a,\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(b,5\left(xy+yz+zx\right)=4xyz\)
\(c,xyz=2\left(x+y+z\right)\)
\(d,\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}=3\)
a) ĐKXĐ: \(x;y>0\)
Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)
\(\Rightarrow4x+4y-xy=0\)
\(\Rightarrow x\left(4-y\right)=-4y\)
\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)
\(\Rightarrow x=4-\frac{16}{4-y}\)
Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)
\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Tìm nốt y và thay vào tìm ra x
a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Không mất tính tổng quát giả sử: \(x\ge y\)
\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Leftrightarrow0< y\le8\)
\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt
b/ \(5\left(xy+yz+zx\right)=4xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{4}{5}\)
Giả sử: \(x\le y\le z\)
\(\Rightarrow\frac{4}{5}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\)
\(\Leftrightarrow0< x\le0\)
Nên vô nghiệm