Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(\Rightarrow xy+yz+zx\le3xy\)
\(\Rightarrow xyz+2\le3xy\)
\(\Rightarrow xy\left(3-z\right)\ge2>0\)
\(\Rightarrow3-z>0\Rightarrow z< 3\)
\(\Rightarrow z=\left\{1;2\right\}\)
TH1:
\(z=1\Rightarrow xy+x+y=xy+2\)
\(\Leftrightarrow x+y=2\Rightarrow x=y=1\)
\(\Rightarrow\left(x;y;z\right)=\left(1;1;1\right)\)
TH2: \(z=2\Rightarrow xy+2x+2y=2xy+2\)
\(\Rightarrow xy-2x-2y+2=0\)
\(\Rightarrow xy-2x-2y+4=2\)
\(\Rightarrow x\left(y-2\right)-2\left(y-2\right)=2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)=2\) (pt ước số cơ bản)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(4;3;1\right)\)
Vậy nghiệm của pt đã cho là:
\(\left(x;y;z\right)=\left(1;1;1\right);\left(4;3;1\right)\) và các hoán vị của chúng