Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Võ Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 13:57

b) Ta có: HB+HC=BC(H nằm giữa B và C)

nên BC=4+9=13(cm)

Xét ΔBAC có AH là đường cao ứng với cạnh CB(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{6\cdot13}{2}=39\left(cm^2\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 13:56

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Vậy: Độ dài đường cao là AH=6cm

 

Trần Võ Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 21:40

a)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Vậy: AH=6cm

Ngô Cao Hoàng
4 tháng 4 2021 lúc 21:07

đủ đề chưa bạn

Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 21:40

b) Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{6\cdot13}{2}=39\left(cm^2\right)\)

Phát Huỳnh
Xem chi tiết
Trúc Giang
16 tháng 9 2021 lúc 8:40

Tam giác ABC vuông tại A. Áp dụng Pitago

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

Tam giác ABH vuông tại H. Áp dụng Pitago

\(\Rightarrow AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)

=> AH = 12 (cm)

thanh phong lê
2 tháng 11 2021 lúc 20:46

Tam giác ABC vuông tại A. Áp dụng Pitago

BC2=AB2+AC2BC2=AB2+AC2

⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

⇒AB2=BH.BC⇒AB2=BH.BC

Trần Võ Quỳnh Anh
Xem chi tiết
Cherry
9 tháng 4 2021 lúc 8:12
1/AH^2 = 1/AC^2 +1/AB^2
=1/6^2 + 1/8^2 =25/576
=> AH^2 =576/25
=> AH=24/5
Nguyễn Lê Phước Thịnh
9 tháng 4 2021 lúc 16:20

Áp dụng định lí Pytago vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{100}{48^2}\)

\(\Leftrightarrow AH^2=\left(\dfrac{48}{10}\right)^2\)

hay AH=4,8cm

Vậy: AH=4,8cm

Trần chí linh
Xem chi tiết
nthv_.
3 tháng 10 2021 lúc 7:45

undefined

Từ Ngọc Yến Nhi
Xem chi tiết
Trần Mạnh
9 tháng 3 2021 lúc 21:21

a/Dựa theo định lý pytago:

tính được: AH=12cm; CH=16cm

 BC= HC+BH= 25cm

Có: AB2=225

AC2=400

=> AB2+AC2=625

mà BC2=625

=> Tam giác ABC vuông tại A( vẽ hình chưa vuông nhưng tự sửa hình nhé)

 

 

Bình An
Xem chi tiết
Thảo Lê Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 13:14

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

chibi trương
Xem chi tiết