a: BC=5cm
AH=2,4cm
BH=1,8cm
CH=3,2cm
a: BC=5cm
AH=2,4cm
BH=1,8cm
CH=3,2cm
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F.
a) Cho biết AB = 3cm, AC = 4cm. Tính độ dài các đoạn HB, HC, AH
b) Chứng minh: AE.EB + AF.FC = AH2
c) Chứng minh: BE = BC.cos3B
1) Tam giác ABC vuông tại A, đường cao AH. Biết HB=3,6cm; HC=6,4cm
a) Tính AB, AC, AH
b) Kẻ HE vuông góc với AB, HF vuông góc với AC. Tình độ dài EF
c) Chứng minh tam giác AEF đông dạng với tam giác ACB
2) Cho tam giác ABC có AB=3cm, BC=5cm, AC=4cm
a) Chứng minh tam giác ABC vuông tại A
b)Tính AH
c)Từ H lần lượt dựng các đường thẳng song song với AB, AC . Các đường thẳng này cắt AB tại E và AC tại F. Chứng minh tam giác BEH đông dạng với tam giác HFC. Từ đí suy ra BE.HC=HB.HF
Cho tám giác ABC vuông tại A , đường cao AH chia cạnh huyền thành hai đoạn BH = 4cm và Hc = 9cm
a) tính AH,AB,AC
b) Từ H kẻ vuông góc với Ab , HF vuông góc với AC ( E thuộc AB , F thuộc AC). Chứng mình rằng AB.AE=AF.AC và tam giác AEF đồng dạng với tam giác AC
c)Gọi D là trung điểm BC. Chúng minh rằng 2.sin ²C+cos ADB=1
giúp em với ạ
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=9cm, AC=12cm
a) Tính AH,HB,HC
b) Từ h kẻ HE vương goác với AB(E thuộc AB). C/m HB.HC=AE.AB
c) Tia phân giác của BAC cắt BC tại D. Tính DB,DC
d) Từ H kẻ HF vuông góc với AC(F thuộc AC). C/m tan^3C = EB/FC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=9cm, AC=12cm
a) Tính AH,HB,HC
b) Từ h kẻ HE vương goác với AB(E thuộc AB). C/m HB.HC=AE.AB
c) Tia phân giác của BAC cắt BC tại D. Tính DB,DC
d) Từ H kẻ HF vuông góc với AC(F thuộc AC). C/m tan^3C = EB/FC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=9cm, AC=12cm
a) Tính AH,HB,HC
b) Từ h kẻ HE vương goác với AB(E thuộc AB). C/m HB.HC=AE.AB
c) Tia phân giác của BAC cắt BC tại D. Tính DB,DC
d) Từ H kẻ HF vuông góc với AC(F thuộc AC). C/m tan^3C = EB/FC
Bài 1 : cho tam giác ABC vuông tại A, có đường cao AH, Biết AB = 4cm, CH = 9cm
1. Tính AB, AC, AH
2. Tính sinB, tanC
3. Tính góc C
Bài 2 : Cho tam giác ABC nhọn có đường cao AH. Từ H vẽ HE vuông góc với AB, HF vuông góc với AC(E thuộc AC, F thuộc AC)
1. Cm : AE.AB= AF.AC
2. Cm : EF= AH.sinA
3. Giả sử AC = 25cm, AH = 15cm, BC = 28cm. Tính AF, EF