cho a,b,c>0 thỏa mãn abc=1.chứng minh \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)
cho a,b,c>0 thõa mãn abc=1. CM \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)
e ơi e nên tải tài liệu của võ quốc bá cẩn đi
Cho 3 số a,b,c thỏa mãn: a+b+c=2016 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\) Tính : A=(a2016-b2016)(b2016-c2016)(c2016-a2016)
Chứng minh rằng nếu 3 số a; b; c thỏa mãn a+b+c=2016 và\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\) thì trong3 số đó phải có 1 số bằng 2016
GIÚP MÌNH VỚI! PLEASE!
Mai mình nộp rồi! giúp mình với!mình tìm ở tất cả các trang mà không thấy! i need help!
Cho \(\frac{a}{b}=\frac{c}{d}\) Chứng minh \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=1\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)
(áp dụng tính chất dãy tỉ số bằng nhau)
Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)
\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)
Cho các số a, b, c thỏa mãn abc = 2016
Tính A = \(\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
Cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
Cho a, b, c thõa mãn : a.b.c = 2016
Tính : \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)
\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016+b+bc}{2016+b+bc}=1\)
Thay : 2016 = abc
ta có :
\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)
Chúc bạn học tốt !
cho a,b,c>0 thõa mãn abc=1. CM 1/(a^2016+b^2016+1)+1/(b^2016+c^2016+1)+1(c^2016+a^2016+1)≤1