chung minh n^4-10n+9 chia het cho 384
CMR: B = n4 - 10n2 + 9 chia het cho 384 ( n lẻ )
Đặt A = n4 -10n2 + 9 = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)
Vì n lẻ nên đặt n = 2k + 1 (k ∈ Z) thì
A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2) ⇒ A chia hết cho 16 (1)
Và (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)
Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384
Vậy ...
tick nha
đặt A=n^4 -10n^2+9
=n^4-n^2-9n^2+9
=(n^4-n^2)-(9n^2-9)
=n^2(n^2-1)-9(n^2-1)
=(n^2-1)(n^2-9)
=(n-1)(n+1)(n-3)(n+3)
vì A lẻ nên n=2k+1
(2k-2)2k(2k+2)(2k+4)
=16(k-1)k(k+1)(k+2) chia hết 16 (1)
ta có (k-1)k(k+1)(k+2) chia hết cho 24(tích 4 số tự nhiên liên tiếp) (2)
từ (1) và (2) suy ra A chia hết cho 384
vậy ... chia hết cho 384
hoặc
Đặt n = 2k + 1 chia hết cho 384
n = ( 2k +1 )^4 - 10 ( 2k+1)^2 + 9
n = 16k^4 + 32k^3 + 24k^2 + 8k +1 - 40k^2 - 40k - 10 +9
n = 16k^4 + 32k^3 - 16k^2 - 32k
n = 16 ( k-1) . k( k-1)(k+2) + 16.4!
n = 16.24 = 384
Vậy n^4 - 10n^2 + 9 chia hết cho 384
Mình nghĩ là phân tích như thế này cũng không biết nữa
Chứng minh rằng:
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
chứng minh n4-10n2+9 chia hết cho 384
Chứng minh rằng:
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)
Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)
\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)
Theo PP quy nạp ta đc đpcm
chung minh rang so 11 ........... 1 - 10n chia het cho 9 voi moi so tu nhien n
n thua so 1
11.....1-10m=1111...11-n-9n =(111..1-n)-9n
111..1-n luôn luôn chia hết cho 9
=> 11...1-n-10n chia hết cho 9
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng \(n^4-10n^2+9\) chia hết cho 384 với mọi số lẻ n
Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath
chứng minh (n4-10n2+9) chia hết cho 384, với mọi số lẻ và n thuộc Z