x = -2y và x + y = 10
Tìm các số nguyên x, y, biết:
a) 3x = 2y và x + y = 10
b) x − 2 y + 3 = 4 6 và y - x = -4
c) x 4 = y − 10 và x + 2y = 12
a) x = 4; y = 6
b) x = 4; y = 0
c) x= -10; y= 25
Tìm các số nguyên x, y , biết:
a) 3x = 2y và x + y = 10
b) x − 2 y + 3 = 8 12 và y − x = − 4
c) x 2 = y 5 và x + 2 y = 12
a) x + y = 10 ⇒ y = 10 − x ⇒ 3 x = 2 ( 10 − x ) ⇒ x = 4 ⇒ y = 6
b) y − x = − 4 ⇒ y = x − 4 ⇒ x − 2 x − 4 + 3 = 8 12 ⇒ x − 2 x − 1 = 8 12 ⇒ 12 x − 24 = 8 x − 8 ⇒ x = 4 ⇒ y = 0
c) x + 2 y = 12 ⇒ x = 12 − 2 y ⇒ 12 − 2 y 2 = y 5 ⇒ 60 − 10 y = 2 y ⇒ y = 5 ⇒ x = 2
Tìm x, y biết:
a, x+y=15 và 5x=2y
b,x-y=10 và x/y=3/7
c,2x-3y=15 và 4x=3y
d,x+2y=1 và x+3y/x-2y=2/3
a) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) . Đến đấy áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}.2=\frac{30}{7}\) ; \(\Rightarrow y=\frac{15}{7}.5=\frac{75}{7}\)
b) \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{3}=\frac{y}{7}\). Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-3}\)
\(\Rightarrow x=-10\) ; \(y=-\frac{70}{3}\)
c) Sai đề vì 2x = 3y => 2x - 3y = 0 mà giả thiết lại đưa ra 2x - 3y = 15 => mâu thuẫn
d) \(\frac{x+3y}{x-2y}=\frac{2}{3}\Leftrightarrow3\left(x+3y\right)=2\left(x-2y\right)\)
\(\Leftrightarrow3x+9y=2x-4y\Leftrightarrow x=-13y\)
Thay x = -13y vào x+2y = 1 được :
x + 2y = 1 => (-13y) + 2y = 1 => -11y = 1 => y = -1/11
=> x = -1/11 . -13 = 13/11
Câu b) mình có nhầm xíu : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-4}=-\frac{5}{2}\)
\(\Rightarrow x=-\frac{15}{2};y=-\frac{35}{2}\)
Tìm các số nguyên x , y , biết :
a. 3x=2y và x+y=10
b. x-2/ y+3=8/2 và y-x=-4
c. x/2=y/5 và x+2y=12
\(a,3x=2y\)và \(x+y=10\)
Ta cs : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{2}=2\Leftrightarrow x=4\)
\(\Leftrightarrow\frac{y}{3}=2\Leftrightarrow y=6\)
\(c,\frac{x}{2}=\frac{y}{5}\)và \(x+2y=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+2y}{2+2.5}=\frac{12}{12}=1\)
\(\Leftrightarrow\frac{x}{2}=1\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{y}{5}=1\Leftrightarrow y=5\)
bạn k lm phần b hộ mình ak
ko ADTC dãy tỉ số = nhau đâu :((
\(b,\frac{x-2}{y+3}=\frac{8}{2}\)và \(y-x=-4\)
\(\frac{x-2}{8}=\frac{y+3}{2}\Leftrightarrow\frac{x-2}{8}=\frac{4y+12}{8}\)
\(\Leftrightarrow x-2=4y+12\)
\(\Leftrightarrow x-4y=12+2=14\Leftrightarrow x-4y=14\)
\(\Leftrightarrow x=14+4y\Leftrightarrow x=\frac{14y}{y}+\frac{4y}{1}\Leftrightarrow\frac{14y}{y}+\frac{4y}{y}=\frac{18y}{y}=18\)
Vậy x = 18
Thay x = 18
\(\frac{18-2}{y+3}=\frac{8}{2}\Leftrightarrow\frac{16}{y+3}=4\Leftrightarrow y+3=4\Leftrightarrow y=1\)
Vậy y = 1
Tính GTBT. a, xy*(x+y)-2x-2y tại x+y=10. . x*y=12 . b, x^5(x+2y)-x^3y*(x+2y)+x^2y^2*x+2y. Tại x=10. . y=5
, xy*(x+y)-2x-2y tại x+y=10
->10xy-2(x+y)=10xy-20=120-20=80
b, x^5(x+2y)-x^3y*(x+2y)+x^2y^2*x+2y=(x+2y)(x^5-x^3y+x^2y^2)
Bạn tự thay vảo nhá
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b 2 -8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x 5 (x + 2y)- x 3 y(x + 2y) + x 2 y 2 (x + 2y) tại x = 10 và y = -5.
a) Cách 1; Thay a = 2003; b = 1997 vào biểu thức rồi thực hiện tính toán thu được A = 12000.
Chú ý: Trong biểu thức trên việc thay trực tiếp khiến việc tính toán khó khăn.
Cách 2: Phân tích A = (b + 3)(a - b), thay a = 2003 và b = 1997 vào biểu thức A = 12000.
b) Phân tích B = (b - 8)(b + c), thay = 108 và c = -8 vào biểu thức B = 10000.
c) Với xy = 8; x + y = 7, ta không tìm được giá trị nguyên x, y. Phân tích c = (x + y)(xy - 2), thay xy = 8; x + y = 7 vào biểu thức c = 42.
d) Phân tích D = (x + 2y)( x 5 - x 3 y + x 2 y 2 )
Nhận xét: Với x -10; y = -5 Þ x+ 2y = 0 => D = 0.
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
4A. Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b2 - 8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x5(x + 2y)-x3y(x + 2y) + x2y2(x + 2y) tại x = 10 và y = -5.
4B. Tính giá trị biểu thức:
a) M = t(10 - 4t) - t2(2t - 5) – 2t + 5 tại t = 5 ;
2
b) N = x2(y - 1) - 5x(1 - y) tại x = -20 và y = 1001;
c) P = y2(x2 + y - 1) - mx2 - my+ m tại x = 9 và y = -80;
d) Q = x(x - y)2 -y(x - y)2 + xy2 - x2y tại x - y = 7 và xy = 9.
4A:
a: \(A=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(b+3\right)\left(a-b\right)\)
\(=2000\cdot6=12000\)
b: \(B=b^2-8b-c\left(8-b\right)\)
\(=b\left(b-8\right)+c\left(b-8\right)\)
\(=\left(b-8\right)\left(b+c\right)\)
\(=100\cdot100=10000\)
a) \(A=a\left(b+3\right)-b\left(3+b\right)\)
\(=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(a+b\right)\left(b+3\right)\)
Thay a=2003 và b=1997 ta có:
\(A=\left(2003+1997\right)\left(1997+3\right)\)
\(=4000.2000\)
\(=8000000\)
\(4,\\ A=\left(b+3\right)\left(a-b\right)=\left(1997+3\right)\left(2003-1997\right)\\ A=2000\cdot6=12000\\ B=\left(b-8\right)\left(b+c\right)=\left(108-8\right)\left(108-8\right)\\ B=100\cdot100=10000\\ C=\left(x+y\right)\left(xy-2\right)=7\cdot10=70\\ D=\left(x+2y\right)\left(x^5-x^3y+x^2y^2\right)=\left(10-10\right)\left(x^5-x^3y+x^2y^2\right)=0\)