Cho x là số nguyên.CMR
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)luôn nhận giá trị nguyên
Cho Q=\(\frac{12x-15}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\). Tập hợp các giá trị nguyên của x để Q nhận giá trị nguyên
Tập hợp các giá trị nguyên để Q nguyên là: {0;1;9;5;6;7}
Cho biểu thức Q= \(\frac{12x-15}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\).Tập hợp các giá nguyên của x để biểu thức Q nhận giá trị nguyên là
Cho biểu thức Q=\(\frac{12x-15}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\).Tập hợp các giá nguyên của x để biểu thức Q nhận giá trị nguyên là
Cho đa thức: \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\). CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).
Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.
Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.
Vậy B khác 17 với mọi x nguyên.
Cho f(x) = \(\frac{1}{6}\)x3 - \(\frac{1}{6}\)x
chứng minh rằng f(x) luôn nhận giá trị nguyên vối mọi x là số nguyên
Ta có
\(f\left(x\right)=\frac{1}{6}x^3-\frac{1}{6}x\)
\(f\left(x\right)=\frac{1}{6}x\left(x^2-1\right)\)
Ta sẽ chứng minh x(x2-1) luôn chia hết cho 6
Thật vậy, ta có x(x2-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Ta có
ƒ x =
6
1 x
3 −
6
1 x
ƒ x =
6
1 x x
2 − 1
Ta sẽ chứng minh x(x2
-1) luôn chia hết cho 6
Thật vậy, ta có x(x2
-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2
-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
cho đa thức \(F\left(x\right)=\frac{1}{5}x^5+\frac{1}{3}x^3+\frac{7}{15}x+2008\)
chứng minh rằng F(x) luôn nhận giá trị nguyên với mọi x thuộc Z
Cho đa thức : f(x)=x(x^19-x^5-x^2018) và g(x)= x^2019-x^2020+9+(x^4+x^2+2)
1)Tính k(x)=f(x)+g(x)
2)Tính giá trị của k(x) tại x bằng \(\left(2-\frac{5}{3}+\frac{7}{6}-\frac{9}{10}+\frac{11}{15}-\frac{13}{21}+\frac{15}{28}-\frac{17}{36}+\frac{19}{45}\right)\cdot\frac{5}{6}\)
3) CMR k(x) không nhận giá trị 2019 với mọi giá trị nguyên x
a)Cho hàm số \(y=\frac{5}{2x+3}\)
Tìm giá trị của x để hàm số nhận giá trị nguyên.
b)Cho hàm số \(y=\frac{-5}{2x-1}\)
Tìm giá trị của x để hàm số nhận giá trị nguyên.