\(\frac{x}{7}=\frac{y}{3}\)và x-24=y
Tìm x,y,z khi:
a)\(\frac{x}{7}=\frac{y}{3}\)và x-24=y
b)\(\frac{x-1}{2005}=\frac{3-y}{2006}\)và x-y=4009
a)Theo bài ra ta có:
\(\frac{x}{7}=\frac{y}{3}\)\(;\)\(x-24=y\Rightarrow x-y=24\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
\(\Rightarrow\begin{cases}\frac{x}{7}=4\Rightarrow x=4\cdot7=28\\\frac{y}{3}=4\Rightarrow y=4\cdot3=12\end{cases}\)
b)Theo bài ra ta có:
\(x-y=4009;\frac{x-1}{2005}=\frac{3-y}{2006}\)
Áp dụng tính chất dãy tỉ số bằng nhau là:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1-3-y}{2005-2006}=\frac{x-y-4}{-1}=\frac{4009-4}{-1}=-4005\)
\(\Rightarrow\begin{cases}\frac{x-1}{2005}=-4005\Rightarrow x-1=-8030025\Rightarrow x=-8030024\\\frac{3-y}{2006}=-4005\Rightarrow3-y=-8034030\Rightarrow y=8034033\end{cases}\)
Tìm x,y,z khi:
1,\(\frac{x}{7}=\frac{y}{3}vàx-24=y\)
2,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}và,y-x=48\)
3,\(\frac{x-1}{2005}=\frac{3-y}{2006}và,x-y=4009\)
4,\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vã-y-z=28\)
5,\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}và2x+3y-z=-14\)
6,\(3x=y;5y=4zvà6x+7y+8z\)
Tìm x, y, z biết:
a) \(\frac{x-1}{2005}=\frac{3-y}{2006}\) và x - y = 4009
b) 3x = y; 5y = 4z và 6x + 7y + 8z = 456
c) \(\frac{x}{7}=\frac{y}{3}\) và x - 24 = y
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)
=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)
b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nahu ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)
=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)
c) Có: \(x-24=y\Rightarrow x-y=24\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
=> \(\begin{cases}x=42\\y=18\end{cases}\)
tim x,y,z khi
\(\frac{x}{7}=\frac{y}{3}va\)x-24=y
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}\)va y-x=48
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)va x-y- z=28
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)va 2x+3-z=-14
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
TÌM X , Y ,Z BIẾT
A)\(\frac{x}{7}=\frac{y}{3}=\frac{Z}{4}\)và\(x+x+Z=28\)
b)\(\frac{x}{2}=\frac{y}{3}=\frac{Z}{6}\)và\(3x-2y-2Z=24\)
a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)
Vậy ...
b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)
\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)
Vậy ...
a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)
=>\(\frac{x}{7}=\frac{12}{7}\)
x=12
=>\(\frac{y}{3}=\frac{12}{7}\)
y=\(\frac{36}{7}\)
=>\(\frac{z}{4}=\frac{12}{7}\)
z=48/7
vây x=12;y=36/7;z=48/7
Tìm x , y , z biet :
a ) x - 10 = y : 6 = \(\frac{2}{24}\) và 2x + y - 2z = 28
b ) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(\frac{2x}{2y}+2=116\)
c ) \(\frac{1+2y}{18}=\frac{14y}{24}=\frac{16y}{6}\)
15. Tìm các số nguyên x, y, z biết \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)
2.3. Tìm các số nuyên x và y biết \(\frac{-2}{x}=\frac{y}{3}\)và x < 0 < y
2.4*. Tìm các số nguyên x và y, biết \(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4
giải đầy đủ ra giùm. thanks
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
Bài 2: tìm x,y,z khi
\(\frac{x}{7}\:\)= \(\frac{y}{3}\)và x-24=y
day la bai
ap dung tinh chat day ti so bang nhau
nha
kbnha
ta có: x-24=y
=>x-y=24
Ta có x/7 =y/3
=(x-y)/7-3
=24/4=6
=>x/7 =6
=>x=42
=>y=42-24
=>y=18
tk cho mk nha
Ta có : x-24=y =>x-y=24
x/7=y/3 và x-y=24
Áp dụng tính chất dãy tỉ số bằng nhau :
x/7=y/3=x-y/7-3=24/4=6
Suy ra :x/7=6=>x=42
y/3=6=>y=18
Vậy :x=42 và y=18
k nha
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\) và 5x+y-2z= 28
b) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z= 186
c) 3x=2y; 7y=5z và x-y+z= 32
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
e)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y-z= 49
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a, x/10 =y/6=z/24= 5x/50=y/6=2z/48
áp dụng tính chất dãy tỉ số bằng nhau
5x/50=y/6=2z/48= 5x+y-2z/50+6-48=28/2=14
==>x=140
y=84
z=336
b,x/6=y/4;y/5=z/7
==>x/15=y/20 (1)
y/20=z/28 (2)
từ 1 và 2 => x/15=y/20=z/28
x/15=y/20=z/28=2x/30=3y/60=z/28
áp dụng tính chất dãy tỉ số bàng nhau
2x/30=3y/60=z/38=2x+3y-z/30+60-28=186/62=3
=>x=45
=>y=60
=>z=84