Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Văn Hoàng
Xem chi tiết
Nguyễn Quốc Gia Huy
19 tháng 8 2017 lúc 16:28

ĐKXĐ: \(-\sqrt{5}\le x\le\sqrt{5}\). Suy ra:

\(-2\sqrt{5}\le2x\le2\sqrt{5}\)

mà \(0\le\sqrt{5-x^2}\ge\sqrt{5}\)

Suy ra: \(-2\sqrt{5}\le2x+\sqrt{5-x^2}\ge3\sqrt{5}\)

Vậy min của A là \(-2\sqrt{5}\)khi x = \(-\sqrt{5}\)

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

phamthiminhanh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Akai Haruma
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Akai Haruma
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Nguyễn Linh Chi
Xem chi tiết
Lê Thị Thục Hiền
22 tháng 5 2021 lúc 22:01

2.Biểu thức luôn xác định

\(y=\dfrac{4}{\sqrt{5-2cos^2sin^2x}}=\dfrac{4}{\sqrt{5-\dfrac{1}{2}sin^22x}}\)

Có: \(1\ge sin^22x\ge0\)

\(\Leftrightarrow-\dfrac{1}{2}\le-\dfrac{1}{2}sin^22x\le0\)

\(\Leftrightarrow\dfrac{3\sqrt{2}}{2}\le\sqrt{5-\dfrac{1}{2}sin^22x}\le\sqrt{5}\)

\(\Rightarrow\dfrac{4\sqrt{2}}{3}\ge y\ge\dfrac{4\sqrt{5}}{5}\)

miny=\(\dfrac{4\sqrt{5}}{5}\) \(\Leftrightarrow sin2x=0\)\(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)

maxy=\(\dfrac{4\sqrt{2}}{3}\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

Lê Thị Thục Hiền
22 tháng 5 2021 lúc 22:21

1.Biểu thức luôn xác định

Xét \(sin2x=0\) \(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\) khi đó \(y=-6\)

Xét \(sin2x\ne0\) 

=> \(1\ge sin^52x\ge-1\)

\(\Leftrightarrow4-1\le4-sin^52x\le4+1\)

\(\Leftrightarrow\sqrt{3}\le\sqrt{4-sin^52x}\le\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}-8\le y\le\sqrt{5}-8\)

\(y=\sqrt{3}-8< -6\) , \(y=\sqrt{5}-8>-6\)

=>min= \(\sqrt{3}-8\) \(\Leftrightarrow sin2x=1\left(tm\right)\) \(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

maxy=\(\sqrt{5}-8\)\(\Leftrightarrow sin2x=-1\left(tm\right)\) \(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

(câu này e ko chắc)

Đặng Quốc Khánh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:26

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

ha:rt the hanoi
Xem chi tiết
Ngô Thành Chung
12 tháng 9 2021 lúc 22:47

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

Renian Karin
Xem chi tiết
Cao Phan Tuấn Anh
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Vũ Thùy Linh
Xem chi tiết
vũ tiền châu
18 tháng 9 2017 lúc 20:40

câu 1 

ta có .....

lười viết Min - cốp xki nha

pham thi thu trang
18 tháng 9 2017 lúc 21:25

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

pham thi thu trang
18 tháng 9 2017 lúc 21:52

ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)

nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )

Cao Chi Hieu
Xem chi tiết