tìm tất cả các bộ số nguyên dương \(\left(x;y;z\right)\)thỏa mãn \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)là số hữu tỉ, đồng thời \(x^2+y^2+z^2\)là số nguyên tố
tìm tất cả các bộ ba số (x,n,p) với các số x,n là là các số nguyên dương và p là số nguyên tố thỏa
mãn :
\(x^3+2x=3\left(p^n-1\right)\)
Tìm tất cả các bộ số nguyên dương (x;y;z) thỏa mãn :
\(\hept{\begin{cases}\left(xy+1\right)⋮z\\\left(xz+1\right)⋮\\\left(yz+1\right)⋮x\end{cases}y}\)
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Tìm tất cả các giá trị x,y nguyên dương sao cho \(\left(x^3+y\right)\left(y^3+x\right)\) là lập phương của một số nguyên tố.
Tìm tất cả bộ 3 số nguyên dương x,y,z thỏa mãn:
\(\hept{\begin{cases}\left(xy+1\right)⋮z\\\left(yz+1\right)⋮x\\\left(xz+1\right)⋮y\end{cases}}\)
Không mất tính tổng quát.
g/s : \(x\ge y\ge z\)\(\ge1\)
Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)
=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)
=> tồn tại số nguyên dương k sao cho: \(xy+yz+zx+1=k.xyz\)
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)
=> \(k\le1+1+1+1=4\)(1)
TH1: k = 4 khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 ( tm)
TH2: k=3
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)
=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)
=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)
=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1
Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)
Vậy x=2, y=z=1 ( thử vào thỏa mãn)
TH3: k=2
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)
=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)
=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1
Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)
Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)
Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)
TH4: K=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)
=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3
Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại
Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại
Với z =3 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)
TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)
Vậy: (x; y; z) là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng
Ps: Cầu một cách ngắn gọn hơn! Thanks
tìm tất cả các bộ ba số nguyên dương (x,y,z) thỏa mãn xyz= \(x^2-2z+2\)
tìm hết tất cả các bộ số nguyên dương (x;y) thoả mãn
x^2+2y^2-3xy+2x-4y+3=0
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)
\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)
\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)
\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)
\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)
Đến đây ta thấy vô lý
P/S:is that true ?
Tìm tất cả các bộ số nguyên dương thỏa mãn phương trình : 2x2 + 2y2 − 5xy + x − 2y + 3 = 0
giúp mình với, mình đang cần gấp
\(2x^2+2y^2-5xy+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y+1\right)=-3\)
x-2y | -3 | -1 | 1 | 3 |
2x-y+1 | 1 | 3 | -3 | -1 |
x | 1 | 5/3 | -3 | -7/3 |
y | 2 | 4/3 | -2 | -8/3 |
Vậy \(\left(x;y\right)=\left(1;2\right)\) là bộ nghiệm nguyên dương duy nhất
Tìm tất cả các bộ (x,y,p) gồm 2 số nguyên dương x,y và số nguyên tố p thỏa mãn \(p^x-y^p=1\)
nghĩ là khoảng 35
Tìm tất cả các bộ số nguyên dương (x;y;z) thoả mãn \(\dfrac{x}{y}=\dfrac{y+x}{y+z}\) và
(y + 2).(4xz + 6y - 3) là số chính phương.
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)
1,tìm tất cả các bộ 3 số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
2, Có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)⋮101\)
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365