hãy chứng minh
n . ( n2 + 1 ) . ( n2 + 4 ) luôn chia hết cho 5 với mọi n thuộc N
Cho A=(n2+1)*(n2+4)
Chứng minh A với mọi n thuộc N
Tìm điều kiện n chứng minh A chia hết cho 120
Chứng minh rằng: n 2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
chứng minh rằng n2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Chứng minh rằng:
(n - 1)2 (n + 1) + (n2 - 1)
luôn chia hết cho 6 với mọi số nguyên n
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Chứng minh:
a) 25 n + 1 – 25 n chia hết cho 100 với mọi số tự nhiên n.
b) n 2 (n - 1) - 2n(n - 1) chia hết cho 6 với mọi số nguyên n.
Chứng minh:
a) 15 n + 15 n + 2 hết cho 113 với mọi số tự nhiên n;
b) n 4 – n 2 chia hết cho 4 với mọi số nguyên n.
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
Chứng minh 2 n 2 ( n + 1 ) - 2 n ( n 2 + n - 3 ) chia hết cho 6 với mọi số nguyên n.
Thực hiện nhân đa thức và thu gọn
2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.