cách tính góc tạo bởi đường thẳng y=ax+b với trục Ox
Nêu cách tính số đo góc tạo bởi đường thẳng y=ax+b với trục Ox?
.Góc tạo bởi đường thẳng y=ax+b với trục Ox là góc nào? a<0 thì góc đó là góc gì? a>0 thì góc đó là góc gì?
Cách bấm máy tính
để tính góc tạo bởi đường thẳng y=2x+3 và trục Ox
Vì 2>0 nên góc tạo đc là góc nhọn
Ta có hệ số góc của đths là 2
Gọi góc cần tìm là \(\alpha< 90^0\)
\(\Rightarrow\tan\alpha=2\approx\tan63^0\\ \Rightarrow\alpha\approx63^0\)
Vậy góc tạo bởi đths và Oc xấp xỉ 63 độ
b) Hãy so sánh các hệ số \(a\) của các đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) trong mỗi hình ở Hình 2 và so sánh các góc \(\alpha \) hoặc các góc \(\beta \) tạo bởi các đường thẳng đó với trục \(Ox\).
b)
- Ở hình 2a là đồ thị của 3 hàm số \(y = 0,5x + 2;y = x + 2;y = 2x + 2\).
Ta có: \({a_1} = 0,5;{a_2} = 1;{a_3} = 2\) nên \({a_1} < {a_2} < {a_3}\).
Ta có: \({\alpha _1} < {\alpha _2}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
\({\alpha _2} < {\alpha _3}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
Do đó, \({\alpha _1} < {\alpha _2} < {\alpha _3}\).
- Ở hình 2b là đồ thị của 3 hàm số \(y = - 2x + 2;y = - x + 2;y = - 0,5x + 2\).
Ta có: \({a_1} = - 2;{a_2} = - 1;{a_3} = - 0,5\) nên \({a_1} < {a_2} < {a_3}\).
Ta có: \({\beta _1} < {\beta _2}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
\({\beta _2} < {\beta _3}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).
Do đó, \({\beta _1} < {\beta _2} < {\beta _3}\).
CHo hàm số y = ax + b
Xác định hàm số biết đồ thị của nó đi qua gốc toạ độ và P(\((\sqrt{3};1)\). Khi đó tính góc tạo bởi đường thẳng này với trục Ox
- Gọi phương trình đường thẳng cần tìm có dạng : y = ax + b
- Thay tọa độ của điểm O và P và hàm số ta được hệ :
\(\left\{{}\begin{matrix}0a+b=0\\a\sqrt{3}+b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
=> Phương trình đường thẳng là : \(y=\dfrac{\sqrt{3}}{3}x\)
\(\Rightarrow Tan\alpha=a=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow\alpha=30^o\)
Vậy ...
Cho hàm số y=ax+b(d). a)xác định hệ số góc a,b biết (d) đi qua A(2,2)và song song đường thẳng y=1/2x+1. b)vẽ đồ thị hàm số với a,b vừa tính được. c) lại ha số đo góc tạo bởi đường thẳng và trục ox(làm tròn đến phút cuối). d)gọi giao điểm (d) với trục hoành là B. gọi giao điểm (d) với trục tung Là C. Tính Sobc=? “Ai cứu tui với pls :))”
a: Vì (d)//y=1/2x+1 nên \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b\ne1\end{matrix}\right.\)
Vậy: (d): \(y=\dfrac{1}{2}x+b\)
Thay x=2 và y=2 vào (d), ta được:
\(b+\dfrac{1}{2}\cdot2=2\)
=>b+1=2
=>b=1
vậy: (d): \(y=\dfrac{1}{2}x+1\)
b:
c: Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
Ta có: (d): \(y=\dfrac{1}{2}x+1\)
=>a=1/2
=>\(tan\alpha=a=\dfrac{1}{2}\)
=>\(\alpha\simeq26^034'\)
d: tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)
Tọa độ C là;
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}x+1=\dfrac{1}{2}\cdot0+1=1\end{matrix}\right.\)
Vậy: B(-2;0); C(1;0)
\(OB=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2+0^2}=2\)
\(OC=\sqrt{\left(1-0\right)^2+\left(0-0\right)^2}=\sqrt{1^2+0^2}=1\)
Vì Ox\(\perp\)Oy nên OB\(\perp\)OC
=>ΔBOC vuông tại O
=>\(S_{BOC}=\dfrac{1}{2}\cdot OB\cdot OC=\dfrac{1}{2}\cdot2\cdot1=1\)
cho đường thẳng
(d):y=x+3
(d'):y=ax+1
A,tìm a biết (d') đi qua điểm m(1;-2)
b,vẽ (d) và (d') với a với tìm dc mặt phẳng tọa độ
c tìm tọa độ giao điểm N của (d) và (d')
tính góc a tạo bởi (d) với trục ox
-tính góc a' tạo bởi (d') với trục ox
a: Thay x=1 và y=-2 vào y=ax+1, ta được:
a+1=-2
hay a=-3
Vậy: (d'): y=-3x+1
c: Tọa độ giao điểm của (d) và (d') là:
\(\left\{{}\begin{matrix}-3x+1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3-\dfrac{1}{2}=\dfrac{5}{2}\end{matrix}\right.\)
tìm giao điểm của đồ thị hàm số y=x-3 với trục tung trục hoành
b,tính góc tạo bởi đường thẳng y=x-3 với trục ox