cho phương trình x^2 - 2mx - 4m -4 =0 cto phương trình luôn có 2 nghiệm phân biệt
Cho phương trình: x^2-2mx+4m-5=0
a) Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Giải phương trình với m=2
c) Chứng minh rằng: P=x1(4-x2)+x2(4-x1) không phụ thuộc vào m
Cho phương trình \(x^2-2mx+4m-4\). Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thõa mãn \(x_1^2+2mx_2-8m+5=0\).
Để pt có hai nghiệm pb <=>\(\Delta>0\)<=> \(4m^2-16m+16>0\) <=>\(4\left(m-2\right)^2>0\left(lđ\right)\)
=> Pt luôn có hai nghiệm pb
Do \(x_1\) là một nghiệm của pt => \(x_1^2-2mx_1+4m-4=0\) <=> \(x_1^2=2mx_1-4m+4\)
Có \(x_1^2+2mx_2-8m+5=0\)
\(\Leftrightarrow2mx_1+2mx_2-4m+4-8m+5=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)
\(\Leftrightarrow2m.2m-12m+9=0\)
\(\Leftrightarrow\left(2m-3\right)^2=0\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
Vậy...
\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Rightarrow m\ne2\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
Ta có: \(x_1^2+2mx_2-8m+5=0\Rightarrow x_1^2+\left(x_1+x_2\right)x_2-8m+5=0\)
\(\Rightarrow x_1^2+x_2^2+x_1x_2-8m+5=0\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-8m+5=0\)
\(\Rightarrow4m^2-4m+4-8m+5=0\Rightarrow4m^2-12m+9=0\)
\(\Rightarrow\left(2m-3\right)^2=0\Rightarrow m=\dfrac{3}{2}\)
cho phương trình x2-2mx+4m-4=0. tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn: x12+2mx2-8m+5=0
Cho phương trình x^2 -2mx+4m-4=0 (1) , m là tham số
a)Gia phương trình với m=1
b)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện x1^2 +2mx2 -8m+5=0
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2
cho phương trình X^2 +2mx -6m-9 =0
giải phương trình khi m = 1
tìm m để phương trình có nghiệm x = 2
Chứng minh rằng phương trình luôn có nghiệm em có hai nghiệm với mọi m
Tìm m để phương trình luôn có 2 nghiệm trái dấu
Tìm m để phương trình luôn có 2 nghiệm dương phân biệt
Tìm m để phương trình luôn có 2 nghiệm phân biệt
a) Thay m=1 vào phương trình ta được:
x2+2.1.x-6.1-9=0
<=> x2+2x-6-9=0
<=> x2+2x-15=0
<=> x2+5x-3x-15=0
<=> x(x+5)-3(x+5)=0
<=> (x-3)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
b) Thay x=2 vào phương trình ta được:
22+2.2.m-6m-9=0
<=> 4+4m-6m-9=0
<=> -2x-5=0
<=> -2x=5
<=> \(x=\frac{-5}{2}\)
Cho phương trình x^2 -2mx-(m^2 +4)=0 (1), m là tham số.
a. Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m.
b. Gọi x1, x2 là 2 nghiệm của phương trình (1. Tìm m để x1^2 + x2^2 =20
Ta có: \(\Delta'=2m^2+4>0\forall m\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)
Mặt khác: \(x_1^2+x_2^2=20\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
cho phương trình x2-2mx+4m-4=0
Tìm m để phương trình có 2 nghiệm x1, x2 phân biệt thỏa mãn x12+2mx2
:Cho phương trình: \(x^4-2mx^2+2m-1=0\)
Tìm m để phương trình có 4 nghiệm phân biệt
Đặt \(x^2=t\ge0\) pt trở thành:
\(t^2-2mt+2m-1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=m^2-\left(2m-1\right)>0\\t_1+t_2=2m>0\\t_1t_2=2m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>0\\m>\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m>\dfrac{1}{2}\end{matrix}\right.\)